An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme
Hasofer-Lind and Rackwtiz-Fiessler (HLRF) method is an efficient iterative algorithm for locating the most probable failure point and calculating the first order reliability index in structural reliability analysis. However, this method may encounter numerical instability problems for high nonlinear...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability Journal of risk and reliability, 2021-04, Vol.235 (2), p.209-229 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 2 |
container_start_page | 209 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability |
container_volume | 235 |
creator | Zhou, Sheng-Tong Wang, Di Xiao, Qian Zhou, Jian-min Li, Hong-Guang Tu, Wen-Bing |
description | Hasofer-Lind and Rackwtiz-Fiessler (HLRF) method is an efficient iterative algorithm for locating the most probable failure point and calculating the first order reliability index in structural reliability analysis. However, this method may encounter numerical instability problems for high nonlinear limit state function (LSF). In this paper, an improved HLRF-based first order reliability method is developed based on a modified Armijo line search rule and an interpolation-based step size backtracking scheme to improve the robustness and efficiency of the original HLRF method. Compared with other improved HLRF-based methods, the proposed method can not only guarantee the global convergence but also adaptively estimate some sensitive algorithm parameters, such as initial step size, step-size reduction coefficient, using the current known iterative information. Ten selected examples with high nonlinear LSFs are used to compare the robustness and efficiency of the proposed method with the original HLRF method and the improved HLRF (iHLRF) method. Results indicate that the proposed method is not only more computationally efficient but also less sensitive to the remaining user-defined algorithm parameters than the iHLRF method. |
doi_str_mv | 10.1177/1748006X20959894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524195467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1748006X20959894</sage_id><sourcerecordid>2524195467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-956427b7e0149da6fe1e531cef17d38859c4f66a814a4a2b8c93110c2bdcd5d43</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQY8V5M2zcdxWfyCBS8KeytpMt3N2jZrkgr739uloiB4mRmG33vDPISuKbmlVIg7KpgkhK9zokolFTtBs-MqI0TI05-Zr8_RRYw7QpignMxQWvTYdfvgP8HixoWYsA8WAg7QOl271qUD7iBtvcW1jiPke9x56xo3zovQuZ3HYWgB695i1ycIe9_q5HyfTXytzXsKY3H9BkezhQ4u0Vmj2whX332O3h7uX5dP2erl8Xm5WGWmICplquQsF7UAQpmymjdAoSyogYYKW0hZKsMazrWkTDOd19KoglJi8toaW1pWzNHN5Dv-9zFATNXOD6EfT1Z5mTOqSsbFSJGJMsHHGKCp9sF1OhwqSqpjttXfbEdJNkmi3sCv6b_8F_1Cevk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524195467</pqid></control><display><type>article</type><title>An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme</title><source>Access via SAGE</source><creator>Zhou, Sheng-Tong ; Wang, Di ; Xiao, Qian ; Zhou, Jian-min ; Li, Hong-Guang ; Tu, Wen-Bing</creator><creatorcontrib>Zhou, Sheng-Tong ; Wang, Di ; Xiao, Qian ; Zhou, Jian-min ; Li, Hong-Guang ; Tu, Wen-Bing</creatorcontrib><description>Hasofer-Lind and Rackwtiz-Fiessler (HLRF) method is an efficient iterative algorithm for locating the most probable failure point and calculating the first order reliability index in structural reliability analysis. However, this method may encounter numerical instability problems for high nonlinear limit state function (LSF). In this paper, an improved HLRF-based first order reliability method is developed based on a modified Armijo line search rule and an interpolation-based step size backtracking scheme to improve the robustness and efficiency of the original HLRF method. Compared with other improved HLRF-based methods, the proposed method can not only guarantee the global convergence but also adaptively estimate some sensitive algorithm parameters, such as initial step size, step-size reduction coefficient, using the current known iterative information. Ten selected examples with high nonlinear LSFs are used to compare the robustness and efficiency of the proposed method with the original HLRF method and the improved HLRF (iHLRF) method. Results indicate that the proposed method is not only more computationally efficient but also less sensitive to the remaining user-defined algorithm parameters than the iHLRF method.</description><identifier>ISSN: 1748-006X</identifier><identifier>EISSN: 1748-0078</identifier><identifier>DOI: 10.1177/1748006X20959894</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Interpolation ; Iterative algorithms ; Iterative methods ; Limit states ; Parameter estimation ; Parameter sensitivity ; Reliability analysis ; Reliability engineering ; Robustness (mathematics) ; Size reduction ; Stability analysis ; Structural reliability</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2021-04, Vol.235 (2), p.209-229</ispartof><rights>IMechE 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-956427b7e0149da6fe1e531cef17d38859c4f66a814a4a2b8c93110c2bdcd5d43</citedby><cites>FETCH-LOGICAL-c309t-956427b7e0149da6fe1e531cef17d38859c4f66a814a4a2b8c93110c2bdcd5d43</cites><orcidid>0000-0002-0525-5235 ; 0000-0001-7126-1214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1748006X20959894$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1748006X20959894$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Zhou, Sheng-Tong</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>Zhou, Jian-min</creatorcontrib><creatorcontrib>Li, Hong-Guang</creatorcontrib><creatorcontrib>Tu, Wen-Bing</creatorcontrib><title>An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme</title><title>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</title><description>Hasofer-Lind and Rackwtiz-Fiessler (HLRF) method is an efficient iterative algorithm for locating the most probable failure point and calculating the first order reliability index in structural reliability analysis. However, this method may encounter numerical instability problems for high nonlinear limit state function (LSF). In this paper, an improved HLRF-based first order reliability method is developed based on a modified Armijo line search rule and an interpolation-based step size backtracking scheme to improve the robustness and efficiency of the original HLRF method. Compared with other improved HLRF-based methods, the proposed method can not only guarantee the global convergence but also adaptively estimate some sensitive algorithm parameters, such as initial step size, step-size reduction coefficient, using the current known iterative information. Ten selected examples with high nonlinear LSFs are used to compare the robustness and efficiency of the proposed method with the original HLRF method and the improved HLRF (iHLRF) method. Results indicate that the proposed method is not only more computationally efficient but also less sensitive to the remaining user-defined algorithm parameters than the iHLRF method.</description><subject>Algorithms</subject><subject>Interpolation</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Limit states</subject><subject>Parameter estimation</subject><subject>Parameter sensitivity</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Robustness (mathematics)</subject><subject>Size reduction</subject><subject>Stability analysis</subject><subject>Structural reliability</subject><issn>1748-006X</issn><issn>1748-0078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQY8V5M2zcdxWfyCBS8KeytpMt3N2jZrkgr739uloiB4mRmG33vDPISuKbmlVIg7KpgkhK9zokolFTtBs-MqI0TI05-Zr8_RRYw7QpignMxQWvTYdfvgP8HixoWYsA8WAg7QOl271qUD7iBtvcW1jiPke9x56xo3zovQuZ3HYWgB695i1ycIe9_q5HyfTXytzXsKY3H9BkezhQ4u0Vmj2whX332O3h7uX5dP2erl8Xm5WGWmICplquQsF7UAQpmymjdAoSyogYYKW0hZKsMazrWkTDOd19KoglJi8toaW1pWzNHN5Dv-9zFATNXOD6EfT1Z5mTOqSsbFSJGJMsHHGKCp9sF1OhwqSqpjttXfbEdJNkmi3sCv6b_8F_1Cevk</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Zhou, Sheng-Tong</creator><creator>Wang, Di</creator><creator>Xiao, Qian</creator><creator>Zhou, Jian-min</creator><creator>Li, Hong-Guang</creator><creator>Tu, Wen-Bing</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-0525-5235</orcidid><orcidid>https://orcid.org/0000-0001-7126-1214</orcidid></search><sort><creationdate>202104</creationdate><title>An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme</title><author>Zhou, Sheng-Tong ; Wang, Di ; Xiao, Qian ; Zhou, Jian-min ; Li, Hong-Guang ; Tu, Wen-Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-956427b7e0149da6fe1e531cef17d38859c4f66a814a4a2b8c93110c2bdcd5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Interpolation</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Limit states</topic><topic>Parameter estimation</topic><topic>Parameter sensitivity</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Robustness (mathematics)</topic><topic>Size reduction</topic><topic>Stability analysis</topic><topic>Structural reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Sheng-Tong</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Xiao, Qian</creatorcontrib><creatorcontrib>Zhou, Jian-min</creatorcontrib><creatorcontrib>Li, Hong-Guang</creatorcontrib><creatorcontrib>Tu, Wen-Bing</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Sheng-Tong</au><au>Wang, Di</au><au>Xiao, Qian</au><au>Zhou, Jian-min</au><au>Li, Hong-Guang</au><au>Tu, Wen-Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle><date>2021-04</date><risdate>2021</risdate><volume>235</volume><issue>2</issue><spage>209</spage><epage>229</epage><pages>209-229</pages><issn>1748-006X</issn><eissn>1748-0078</eissn><abstract>Hasofer-Lind and Rackwtiz-Fiessler (HLRF) method is an efficient iterative algorithm for locating the most probable failure point and calculating the first order reliability index in structural reliability analysis. However, this method may encounter numerical instability problems for high nonlinear limit state function (LSF). In this paper, an improved HLRF-based first order reliability method is developed based on a modified Armijo line search rule and an interpolation-based step size backtracking scheme to improve the robustness and efficiency of the original HLRF method. Compared with other improved HLRF-based methods, the proposed method can not only guarantee the global convergence but also adaptively estimate some sensitive algorithm parameters, such as initial step size, step-size reduction coefficient, using the current known iterative information. Ten selected examples with high nonlinear LSFs are used to compare the robustness and efficiency of the proposed method with the original HLRF method and the improved HLRF (iHLRF) method. Results indicate that the proposed method is not only more computationally efficient but also less sensitive to the remaining user-defined algorithm parameters than the iHLRF method.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1748006X20959894</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0525-5235</orcidid><orcidid>https://orcid.org/0000-0001-7126-1214</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-006X |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2021-04, Vol.235 (2), p.209-229 |
issn | 1748-006X 1748-0078 |
language | eng |
recordid | cdi_proquest_journals_2524195467 |
source | Access via SAGE |
subjects | Algorithms Interpolation Iterative algorithms Iterative methods Limit states Parameter estimation Parameter sensitivity Reliability analysis Reliability engineering Robustness (mathematics) Size reduction Stability analysis Structural reliability |
title | An improved first order reliability method based on modified Armijo rule and interpolation-based backtracking scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20first%20order%20reliability%20method%20based%20on%20modified%20Armijo%20rule%20and%20interpolation-based%20backtracking%20scheme&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20O,%20Journal%20of%20risk%20and%20reliability&rft.au=Zhou,%20Sheng-Tong&rft.date=2021-04&rft.volume=235&rft.issue=2&rft.spage=209&rft.epage=229&rft.pages=209-229&rft.issn=1748-006X&rft.eissn=1748-0078&rft_id=info:doi/10.1177/1748006X20959894&rft_dat=%3Cproquest_cross%3E2524195467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524195467&rft_id=info:pmid/&rft_sage_id=10.1177_1748006X20959894&rfr_iscdi=true |