Optimal successive complementary expansion for singular differential equations

In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-06, Vol.44 (9), p.7423-7432
1. Verfasser: Say, Fatih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7432
container_issue 9
container_start_page 7423
container_title Mathematical methods in the applied sciences
container_volume 44
creator Say, Fatih
description In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations.
doi_str_mv 10.1002/mma.6228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524028828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524028828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2548-661608cda7e2abc86e229f64eb193c1e18e0b0738cb3a6079e5dd65930a314c83</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpSPyESCwsKXdO4jhjVfElUbrAbDnOBbnKV-0E6L_HpaxMtzz3nu5l7BphgQD8rm31QnAuT9gMoShiTHNxymaAOcQpx_ScXXi_BQCJyGfsdTOMttVN5CdjyHv7SZHp26GhlrpRu31E34PuvO27qO5d5G33MTXaRZWta3LB2LBMu0mPgfhLdlbrxtPV35yz94f7t9VT_LJ5fF4tX2LDs1TGQqAAaSqdE9elkYI4L2qRUolFYpBQEpSQJ9KUiRaQF5RVlciKBHSCqZHJnN0ccwfX7ybyo9r2k-vCScUzngKXkh_U7VEZ13vvqFaDC8-6vUJQh7ZUaEsd2go0PtIv29D-X6fW6-Wv_wEa32vy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524028828</pqid></control><display><type>article</type><title>Optimal successive complementary expansion for singular differential equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Say, Fatih</creator><creatorcontrib>Say, Fatih</creatorcontrib><description>In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6228</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>asymptotic approximations ; Asymptotic methods ; Asymptotic properties ; Asymptotic series ; asymptotics beyond all orders ; Boundary value problems ; Differential equations ; Interaction parameters ; Mathematical analysis ; Optimization ; Ordinary differential equations ; singular perturbations ; Stokes lines ; successive complementary expansion</subject><ispartof>Mathematical methods in the applied sciences, 2021-06, Vol.44 (9), p.7423-7432</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2548-661608cda7e2abc86e229f64eb193c1e18e0b0738cb3a6079e5dd65930a314c83</cites><orcidid>0000-0002-4500-2830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Say, Fatih</creatorcontrib><title>Optimal successive complementary expansion for singular differential equations</title><title>Mathematical methods in the applied sciences</title><description>In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations.</description><subject>asymptotic approximations</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Asymptotic series</subject><subject>asymptotics beyond all orders</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Interaction parameters</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>singular perturbations</subject><subject>Stokes lines</subject><subject>successive complementary expansion</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpSPyESCwsKXdO4jhjVfElUbrAbDnOBbnKV-0E6L_HpaxMtzz3nu5l7BphgQD8rm31QnAuT9gMoShiTHNxymaAOcQpx_ScXXi_BQCJyGfsdTOMttVN5CdjyHv7SZHp26GhlrpRu31E34PuvO27qO5d5G33MTXaRZWta3LB2LBMu0mPgfhLdlbrxtPV35yz94f7t9VT_LJ5fF4tX2LDs1TGQqAAaSqdE9elkYI4L2qRUolFYpBQEpSQJ9KUiRaQF5RVlciKBHSCqZHJnN0ccwfX7ybyo9r2k-vCScUzngKXkh_U7VEZ13vvqFaDC8-6vUJQh7ZUaEsd2go0PtIv29D-X6fW6-Wv_wEa32vy</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Say, Fatih</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4500-2830</orcidid></search><sort><creationdate>202106</creationdate><title>Optimal successive complementary expansion for singular differential equations</title><author>Say, Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2548-661608cda7e2abc86e229f64eb193c1e18e0b0738cb3a6079e5dd65930a314c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>asymptotic approximations</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Asymptotic series</topic><topic>asymptotics beyond all orders</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Interaction parameters</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>singular perturbations</topic><topic>Stokes lines</topic><topic>successive complementary expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Say, Fatih</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Say, Fatih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal successive complementary expansion for singular differential equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-06</date><risdate>2021</risdate><volume>44</volume><issue>9</issue><spage>7423</spage><epage>7432</epage><pages>7423-7432</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6228</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4500-2830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-06, Vol.44 (9), p.7423-7432
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2524028828
source Wiley Online Library Journals Frontfile Complete
subjects asymptotic approximations
Asymptotic methods
Asymptotic properties
Asymptotic series
asymptotics beyond all orders
Boundary value problems
Differential equations
Interaction parameters
Mathematical analysis
Optimization
Ordinary differential equations
singular perturbations
Stokes lines
successive complementary expansion
title Optimal successive complementary expansion for singular differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20successive%20complementary%20expansion%20for%20singular%20differential%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Say,%20Fatih&rft.date=2021-06&rft.volume=44&rft.issue=9&rft.spage=7423&rft.epage=7432&rft.pages=7423-7432&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6228&rft_dat=%3Cproquest_cross%3E2524028828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524028828&rft_id=info:pmid/&rfr_iscdi=true