Optimal successive complementary expansion for singular differential equations
In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-06, Vol.44 (9), p.7423-7432 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7432 |
---|---|
container_issue | 9 |
container_start_page | 7423 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Say, Fatih |
description | In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations. |
doi_str_mv | 10.1002/mma.6228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524028828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524028828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2548-661608cda7e2abc86e229f64eb193c1e18e0b0738cb3a6079e5dd65930a314c83</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpSPyESCwsKXdO4jhjVfElUbrAbDnOBbnKV-0E6L_HpaxMtzz3nu5l7BphgQD8rm31QnAuT9gMoShiTHNxymaAOcQpx_ScXXi_BQCJyGfsdTOMttVN5CdjyHv7SZHp26GhlrpRu31E34PuvO27qO5d5G33MTXaRZWta3LB2LBMu0mPgfhLdlbrxtPV35yz94f7t9VT_LJ5fF4tX2LDs1TGQqAAaSqdE9elkYI4L2qRUolFYpBQEpSQJ9KUiRaQF5RVlciKBHSCqZHJnN0ccwfX7ybyo9r2k-vCScUzngKXkh_U7VEZ13vvqFaDC8-6vUJQh7ZUaEsd2go0PtIv29D-X6fW6-Wv_wEa32vy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524028828</pqid></control><display><type>article</type><title>Optimal successive complementary expansion for singular differential equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Say, Fatih</creator><creatorcontrib>Say, Fatih</creatorcontrib><description>In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6228</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>asymptotic approximations ; Asymptotic methods ; Asymptotic properties ; Asymptotic series ; asymptotics beyond all orders ; Boundary value problems ; Differential equations ; Interaction parameters ; Mathematical analysis ; Optimization ; Ordinary differential equations ; singular perturbations ; Stokes lines ; successive complementary expansion</subject><ispartof>Mathematical methods in the applied sciences, 2021-06, Vol.44 (9), p.7423-7432</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2548-661608cda7e2abc86e229f64eb193c1e18e0b0738cb3a6079e5dd65930a314c83</cites><orcidid>0000-0002-4500-2830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Say, Fatih</creatorcontrib><title>Optimal successive complementary expansion for singular differential equations</title><title>Mathematical methods in the applied sciences</title><description>In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations.</description><subject>asymptotic approximations</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Asymptotic series</subject><subject>asymptotics beyond all orders</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Interaction parameters</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>singular perturbations</subject><subject>Stokes lines</subject><subject>successive complementary expansion</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpSPyESCwsKXdO4jhjVfElUbrAbDnOBbnKV-0E6L_HpaxMtzz3nu5l7BphgQD8rm31QnAuT9gMoShiTHNxymaAOcQpx_ScXXi_BQCJyGfsdTOMttVN5CdjyHv7SZHp26GhlrpRu31E34PuvO27qO5d5G33MTXaRZWta3LB2LBMu0mPgfhLdlbrxtPV35yz94f7t9VT_LJ5fF4tX2LDs1TGQqAAaSqdE9elkYI4L2qRUolFYpBQEpSQJ9KUiRaQF5RVlciKBHSCqZHJnN0ccwfX7ybyo9r2k-vCScUzngKXkh_U7VEZ13vvqFaDC8-6vUJQh7ZUaEsd2go0PtIv29D-X6fW6-Wv_wEa32vy</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Say, Fatih</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4500-2830</orcidid></search><sort><creationdate>202106</creationdate><title>Optimal successive complementary expansion for singular differential equations</title><author>Say, Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2548-661608cda7e2abc86e229f64eb193c1e18e0b0738cb3a6079e5dd65930a314c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>asymptotic approximations</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Asymptotic series</topic><topic>asymptotics beyond all orders</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Interaction parameters</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>singular perturbations</topic><topic>Stokes lines</topic><topic>successive complementary expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Say, Fatih</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Say, Fatih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal successive complementary expansion for singular differential equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-06</date><risdate>2021</risdate><volume>44</volume><issue>9</issue><spage>7423</spage><epage>7432</epage><pages>7423-7432</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this article, we consider a singular ordinary differential equation of a two‐point boundary value problem in an asymptotic sense. We discuss the method of successive complementary expansion (SCEM) with asymptotics beyond all orders approach thinking and also scrutinise the solutions that already exist in the literature along with their advantages and drawbacks. In particular, we present an approach using techniques in exponential asymptotics that extends the SCEM for singular differential equations well beyond the leading‐order terms and consider the interaction of small parameter in the solutions. We optimally truncate the divergent outer solution and do not eliminate the growing exponentials. Through this analysis, we show that the extended method exhibits more information, such as the effects of exponential smallness and Stokes lines, than the regular SCEM that cannot reveal the information from such singular differential equations.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6228</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4500-2830</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-06, Vol.44 (9), p.7423-7432 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2524028828 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | asymptotic approximations Asymptotic methods Asymptotic properties Asymptotic series asymptotics beyond all orders Boundary value problems Differential equations Interaction parameters Mathematical analysis Optimization Ordinary differential equations singular perturbations Stokes lines successive complementary expansion |
title | Optimal successive complementary expansion for singular differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20successive%20complementary%20expansion%20for%20singular%20differential%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Say,%20Fatih&rft.date=2021-06&rft.volume=44&rft.issue=9&rft.spage=7423&rft.epage=7432&rft.pages=7423-7432&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6228&rft_dat=%3Cproquest_cross%3E2524028828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524028828&rft_id=info:pmid/&rfr_iscdi=true |