Corrected score methods for estimating Bayesian networks with error‐prone nodes
Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods th...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2021-05, Vol.40 (11), p.2692-2712 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2712 |
---|---|
container_issue | 11 |
container_start_page | 2692 |
container_title | Statistics in medicine |
container_volume | 40 |
creator | Huang, Xianzheng Zhang, Hongmei |
description | Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data. |
doi_str_mv | 10.1002/sim.8925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2523033118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2523033118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</originalsourceid><addsrcrecordid>eNp1kEtOwzAQQC0EouUjcQJkiQ2bFH9jZwkVn0pFCNG9lTgTmtLExU5VdccROCMnwaWFHavZPL2ZeQidUTKghLCrUDcDnTG5h_qUZCohTOp91CdMqSRVVPbQUQgzQiiVTB2iHudpKrVWffQ8dN6D7aDEwToPuIFu6sqAK-cxhK5u8q5uX_FNvoZQ5y1uoVs5_xbwqu6mGLx3_uvjc-FdC7h1JYQTdFDl8wCnu3mMJne3k-FDMn66Hw2vx4nlIpMJTcGmlBdZyQXNhQIAqkqSFkQVrGJWAxNM6ZxKXdlUSFGIlOaltqrkICQ_RhdbbVz9voyXmplb-jZuNEwyTjinVEfqcktZ70LwUJmFjy_5taHEbNKZmM5s0kX0fCdcFg2Uf-BvqwgkW2BVz2H9r8i8jB5_hN8Rznj7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523033118</pqid></control><display><type>article</type><title>Corrected score methods for estimating Bayesian networks with error‐prone nodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Xianzheng ; Zhang, Hongmei</creator><creatorcontrib>Huang, Xianzheng ; Zhang, Hongmei</creatorcontrib><description>Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8925</identifier><identifier>PMID: 33665887</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>false discovery rate ; Flow cytometry ; Frobenius norm ; information criterion ; specificity ; topological sorting</subject><ispartof>Statistics in medicine, 2021-05, Vol.40 (11), p.2692-2712</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</citedby><cites>FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</cites><orcidid>0000-0001-7077-0869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8925$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8925$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33665887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Zhang, Hongmei</creatorcontrib><title>Corrected score methods for estimating Bayesian networks with error‐prone nodes</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data.</description><subject>false discovery rate</subject><subject>Flow cytometry</subject><subject>Frobenius norm</subject><subject>information criterion</subject><subject>specificity</subject><subject>topological sorting</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQQC0EouUjcQJkiQ2bFH9jZwkVn0pFCNG9lTgTmtLExU5VdccROCMnwaWFHavZPL2ZeQidUTKghLCrUDcDnTG5h_qUZCohTOp91CdMqSRVVPbQUQgzQiiVTB2iHudpKrVWffQ8dN6D7aDEwToPuIFu6sqAK-cxhK5u8q5uX_FNvoZQ5y1uoVs5_xbwqu6mGLx3_uvjc-FdC7h1JYQTdFDl8wCnu3mMJne3k-FDMn66Hw2vx4nlIpMJTcGmlBdZyQXNhQIAqkqSFkQVrGJWAxNM6ZxKXdlUSFGIlOaltqrkICQ_RhdbbVz9voyXmplb-jZuNEwyTjinVEfqcktZ70LwUJmFjy_5taHEbNKZmM5s0kX0fCdcFg2Uf-BvqwgkW2BVz2H9r8i8jB5_hN8Rznj7</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Huang, Xianzheng</creator><creator>Zhang, Hongmei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7077-0869</orcidid></search><sort><creationdate>20210520</creationdate><title>Corrected score methods for estimating Bayesian networks with error‐prone nodes</title><author>Huang, Xianzheng ; Zhang, Hongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>false discovery rate</topic><topic>Flow cytometry</topic><topic>Frobenius norm</topic><topic>information criterion</topic><topic>specificity</topic><topic>topological sorting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Zhang, Hongmei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xianzheng</au><au>Zhang, Hongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrected score methods for estimating Bayesian networks with error‐prone nodes</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>40</volume><issue>11</issue><spage>2692</spage><epage>2712</epage><pages>2692-2712</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33665887</pmid><doi>10.1002/sim.8925</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7077-0869</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2021-05, Vol.40 (11), p.2692-2712 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_journals_2523033118 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | false discovery rate Flow cytometry Frobenius norm information criterion specificity topological sorting |
title | Corrected score methods for estimating Bayesian networks with error‐prone nodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrected%20score%20methods%20for%20estimating%20Bayesian%20networks%20with%20error%E2%80%90prone%20nodes&rft.jtitle=Statistics%20in%20medicine&rft.au=Huang,%20Xianzheng&rft.date=2021-05-20&rft.volume=40&rft.issue=11&rft.spage=2692&rft.epage=2712&rft.pages=2692-2712&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8925&rft_dat=%3Cproquest_cross%3E2523033118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523033118&rft_id=info:pmid/33665887&rfr_iscdi=true |