Corrected score methods for estimating Bayesian networks with error‐prone nodes

Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2021-05, Vol.40 (11), p.2692-2712
Hauptverfasser: Huang, Xianzheng, Zhang, Hongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2712
container_issue 11
container_start_page 2692
container_title Statistics in medicine
container_volume 40
creator Huang, Xianzheng
Zhang, Hongmei
description Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data.
doi_str_mv 10.1002/sim.8925
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2523033118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2523033118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</originalsourceid><addsrcrecordid>eNp1kEtOwzAQQC0EouUjcQJkiQ2bFH9jZwkVn0pFCNG9lTgTmtLExU5VdccROCMnwaWFHavZPL2ZeQidUTKghLCrUDcDnTG5h_qUZCohTOp91CdMqSRVVPbQUQgzQiiVTB2iHudpKrVWffQ8dN6D7aDEwToPuIFu6sqAK-cxhK5u8q5uX_FNvoZQ5y1uoVs5_xbwqu6mGLx3_uvjc-FdC7h1JYQTdFDl8wCnu3mMJne3k-FDMn66Hw2vx4nlIpMJTcGmlBdZyQXNhQIAqkqSFkQVrGJWAxNM6ZxKXdlUSFGIlOaltqrkICQ_RhdbbVz9voyXmplb-jZuNEwyTjinVEfqcktZ70LwUJmFjy_5taHEbNKZmM5s0kX0fCdcFg2Uf-BvqwgkW2BVz2H9r8i8jB5_hN8Rznj7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523033118</pqid></control><display><type>article</type><title>Corrected score methods for estimating Bayesian networks with error‐prone nodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Xianzheng ; Zhang, Hongmei</creator><creatorcontrib>Huang, Xianzheng ; Zhang, Hongmei</creatorcontrib><description>Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8925</identifier><identifier>PMID: 33665887</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>false discovery rate ; Flow cytometry ; Frobenius norm ; information criterion ; specificity ; topological sorting</subject><ispartof>Statistics in medicine, 2021-05, Vol.40 (11), p.2692-2712</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</citedby><cites>FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</cites><orcidid>0000-0001-7077-0869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8925$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8925$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33665887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Zhang, Hongmei</creatorcontrib><title>Corrected score methods for estimating Bayesian networks with error‐prone nodes</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data.</description><subject>false discovery rate</subject><subject>Flow cytometry</subject><subject>Frobenius norm</subject><subject>information criterion</subject><subject>specificity</subject><subject>topological sorting</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQQC0EouUjcQJkiQ2bFH9jZwkVn0pFCNG9lTgTmtLExU5VdccROCMnwaWFHavZPL2ZeQidUTKghLCrUDcDnTG5h_qUZCohTOp91CdMqSRVVPbQUQgzQiiVTB2iHudpKrVWffQ8dN6D7aDEwToPuIFu6sqAK-cxhK5u8q5uX_FNvoZQ5y1uoVs5_xbwqu6mGLx3_uvjc-FdC7h1JYQTdFDl8wCnu3mMJne3k-FDMn66Hw2vx4nlIpMJTcGmlBdZyQXNhQIAqkqSFkQVrGJWAxNM6ZxKXdlUSFGIlOaltqrkICQ_RhdbbVz9voyXmplb-jZuNEwyTjinVEfqcktZ70LwUJmFjy_5taHEbNKZmM5s0kX0fCdcFg2Uf-BvqwgkW2BVz2H9r8i8jB5_hN8Rznj7</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Huang, Xianzheng</creator><creator>Zhang, Hongmei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7077-0869</orcidid></search><sort><creationdate>20210520</creationdate><title>Corrected score methods for estimating Bayesian networks with error‐prone nodes</title><author>Huang, Xianzheng ; Zhang, Hongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3495-16ec613b9d341a47eee17d06b07b2f2c8e24278a158fc6454b461ad8c7d3e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>false discovery rate</topic><topic>Flow cytometry</topic><topic>Frobenius norm</topic><topic>information criterion</topic><topic>specificity</topic><topic>topological sorting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Zhang, Hongmei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xianzheng</au><au>Zhang, Hongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrected score methods for estimating Bayesian networks with error‐prone nodes</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>40</volume><issue>11</issue><spage>2692</spage><epage>2712</epage><pages>2692-2712</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error‐prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods with a naive method that ignores measurement error. Finally, we apply these methods to infer signaling networks using single cell flow cytometry data.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33665887</pmid><doi>10.1002/sim.8925</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7077-0869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2021-05, Vol.40 (11), p.2692-2712
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_journals_2523033118
source Wiley Online Library Journals Frontfile Complete
subjects false discovery rate
Flow cytometry
Frobenius norm
information criterion
specificity
topological sorting
title Corrected score methods for estimating Bayesian networks with error‐prone nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrected%20score%20methods%20for%20estimating%20Bayesian%20networks%20with%20error%E2%80%90prone%20nodes&rft.jtitle=Statistics%20in%20medicine&rft.au=Huang,%20Xianzheng&rft.date=2021-05-20&rft.volume=40&rft.issue=11&rft.spage=2692&rft.epage=2712&rft.pages=2692-2712&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8925&rft_dat=%3Cproquest_cross%3E2523033118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523033118&rft_id=info:pmid/33665887&rfr_iscdi=true