Eliminating microstructure and mechanical anisotropy of Ti-6.5Al-2Zr-1Mo-1 V manufactured by hot-wire arc additive manufacturing through boron addition

Hot-wire arc additive manufacturing (HWAAM) raises new opportunities to fabricate large-scale integral titanium components due to its high deposition rate. However, microstructural heterogeneity and mechanical anisotropy are critical issues for the wide application of HWAAM. This study took Ti-6.5Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-07, Vol.56 (21), p.12438-12454
Hauptverfasser: Lu, Tao, Cui, Yinan, Xue, Linan, Zhang, Haorui, Liu, Changmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12454
container_issue 21
container_start_page 12438
container_title Journal of materials science
container_volume 56
creator Lu, Tao
Cui, Yinan
Xue, Linan
Zhang, Haorui
Liu, Changmeng
description Hot-wire arc additive manufacturing (HWAAM) raises new opportunities to fabricate large-scale integral titanium components due to its high deposition rate. However, microstructural heterogeneity and mechanical anisotropy are critical issues for the wide application of HWAAM. This study took Ti-6.5Al-2Zr-1Mo-1V as an example to demonstrate that these two issues can be alleviated through tuning the alloy composition. Boron addition (0.1wt.%) led to the formation of TiB whiskers, and most of the whiskers densely clustered along the β grain boundaries. Boron addition was effective in the β grain refinement and texture weakening, which contributed to the reduction of α phase heterogeneity. The mechanical anisotropy was significantly reduced because of the elimination of the microstructural heterogeneity, especially the elimination of the coarse columnar β grains and the continuous grain boundary α phase. The tensile properties of the boron modified part were slightly poorer than that of the unmodified part, because the separation of the TiB aggregates led to the premature failure of the modified part. Graphical abstract
doi_str_mv 10.1007/s10853-021-06012-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522969861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522969861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-999b58d45e1f581da0121948af776310aa2ca53f056e61c82984975cf840718f3</originalsourceid><addsrcrecordid>eNp9kc1O3DAQxy0EUrfQF-jJEmfDjBMn9hEhWpBAvdAeerG8js0abeKt7bTKm_TYZ-HJSFikcuI0Gun_oZkfIZ8RzhCgPc8IUlQMODJoADmbDsgKRVuxWkJ1SFYAnDNeN_iBfMz5EQBEy3FF_l5tQx8GU8LwQPtgU8wljbaMyVEzdLR3dmOGYM12XkOOJcXdRKOn94E1Z-Jiy_jPxPAuMnz694P2Zhi9ebF3dD3RTSzsT1iykqWm60IJv90b1dJaNimODxu6jikOr6I4nJAjb7bZfXqdx-T7l6v7y2t2--3rzeXFLbMVqsKUUmshu1o49EJiZ-bjUdXS-LZtKgRjuDWi8iAa16CVXMlatcJ6WUOL0lfH5HSfu0vx1-hy0Y9xTMNcqbngXDVKNjir-F61PCgn5_Uuhd6kSSPohYDeE9AzAf1CQE-zqdqb8m451KX_0e-4ngG6BIuF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522969861</pqid></control><display><type>article</type><title>Eliminating microstructure and mechanical anisotropy of Ti-6.5Al-2Zr-1Mo-1 V manufactured by hot-wire arc additive manufacturing through boron addition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Tao ; Cui, Yinan ; Xue, Linan ; Zhang, Haorui ; Liu, Changmeng</creator><creatorcontrib>Lu, Tao ; Cui, Yinan ; Xue, Linan ; Zhang, Haorui ; Liu, Changmeng</creatorcontrib><description>Hot-wire arc additive manufacturing (HWAAM) raises new opportunities to fabricate large-scale integral titanium components due to its high deposition rate. However, microstructural heterogeneity and mechanical anisotropy are critical issues for the wide application of HWAAM. This study took Ti-6.5Al-2Zr-1Mo-1V as an example to demonstrate that these two issues can be alleviated through tuning the alloy composition. Boron addition (0.1wt.%) led to the formation of TiB whiskers, and most of the whiskers densely clustered along the β grain boundaries. Boron addition was effective in the β grain refinement and texture weakening, which contributed to the reduction of α phase heterogeneity. The mechanical anisotropy was significantly reduced because of the elimination of the microstructural heterogeneity, especially the elimination of the coarse columnar β grains and the continuous grain boundary α phase. The tensile properties of the boron modified part were slightly poorer than that of the unmodified part, because the separation of the TiB aggregates led to the premature failure of the modified part. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06012-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Anisotropy ; Boron ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Grain boundaries ; Grain refinement ; Heterogeneity ; Materials Science ; Metals &amp; Corrosion ; Microstructure ; Polymer Sciences ; Solid Mechanics ; Tensile properties ; Titanium ; Whiskers (metals) ; Wire</subject><ispartof>Journal of materials science, 2021-07, Vol.56 (21), p.12438-12454</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-999b58d45e1f581da0121948af776310aa2ca53f056e61c82984975cf840718f3</citedby><cites>FETCH-LOGICAL-c319t-999b58d45e1f581da0121948af776310aa2ca53f056e61c82984975cf840718f3</cites><orcidid>0000-0002-8004-9052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06012-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06012-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Tao</creatorcontrib><creatorcontrib>Cui, Yinan</creatorcontrib><creatorcontrib>Xue, Linan</creatorcontrib><creatorcontrib>Zhang, Haorui</creatorcontrib><creatorcontrib>Liu, Changmeng</creatorcontrib><title>Eliminating microstructure and mechanical anisotropy of Ti-6.5Al-2Zr-1Mo-1 V manufactured by hot-wire arc additive manufacturing through boron addition</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Hot-wire arc additive manufacturing (HWAAM) raises new opportunities to fabricate large-scale integral titanium components due to its high deposition rate. However, microstructural heterogeneity and mechanical anisotropy are critical issues for the wide application of HWAAM. This study took Ti-6.5Al-2Zr-1Mo-1V as an example to demonstrate that these two issues can be alleviated through tuning the alloy composition. Boron addition (0.1wt.%) led to the formation of TiB whiskers, and most of the whiskers densely clustered along the β grain boundaries. Boron addition was effective in the β grain refinement and texture weakening, which contributed to the reduction of α phase heterogeneity. The mechanical anisotropy was significantly reduced because of the elimination of the microstructural heterogeneity, especially the elimination of the coarse columnar β grains and the continuous grain boundary α phase. The tensile properties of the boron modified part were slightly poorer than that of the unmodified part, because the separation of the TiB aggregates led to the premature failure of the modified part. Graphical abstract</description><subject>Additive manufacturing</subject><subject>Anisotropy</subject><subject>Boron</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Grain boundaries</subject><subject>Grain refinement</subject><subject>Heterogeneity</subject><subject>Materials Science</subject><subject>Metals &amp; Corrosion</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Tensile properties</subject><subject>Titanium</subject><subject>Whiskers (metals)</subject><subject>Wire</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1O3DAQxy0EUrfQF-jJEmfDjBMn9hEhWpBAvdAeerG8js0abeKt7bTKm_TYZ-HJSFikcuI0Gun_oZkfIZ8RzhCgPc8IUlQMODJoADmbDsgKRVuxWkJ1SFYAnDNeN_iBfMz5EQBEy3FF_l5tQx8GU8LwQPtgU8wljbaMyVEzdLR3dmOGYM12XkOOJcXdRKOn94E1Z-Jiy_jPxPAuMnz694P2Zhi9ebF3dD3RTSzsT1iykqWm60IJv90b1dJaNimODxu6jikOr6I4nJAjb7bZfXqdx-T7l6v7y2t2--3rzeXFLbMVqsKUUmshu1o49EJiZ-bjUdXS-LZtKgRjuDWi8iAa16CVXMlatcJ6WUOL0lfH5HSfu0vx1-hy0Y9xTMNcqbngXDVKNjir-F61PCgn5_Uuhd6kSSPohYDeE9AzAf1CQE-zqdqb8m451KX_0e-4ngG6BIuF</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Lu, Tao</creator><creator>Cui, Yinan</creator><creator>Xue, Linan</creator><creator>Zhang, Haorui</creator><creator>Liu, Changmeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8004-9052</orcidid></search><sort><creationdate>20210701</creationdate><title>Eliminating microstructure and mechanical anisotropy of Ti-6.5Al-2Zr-1Mo-1 V manufactured by hot-wire arc additive manufacturing through boron addition</title><author>Lu, Tao ; Cui, Yinan ; Xue, Linan ; Zhang, Haorui ; Liu, Changmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-999b58d45e1f581da0121948af776310aa2ca53f056e61c82984975cf840718f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Anisotropy</topic><topic>Boron</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Grain boundaries</topic><topic>Grain refinement</topic><topic>Heterogeneity</topic><topic>Materials Science</topic><topic>Metals &amp; Corrosion</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Tensile properties</topic><topic>Titanium</topic><topic>Whiskers (metals)</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Tao</creatorcontrib><creatorcontrib>Cui, Yinan</creatorcontrib><creatorcontrib>Xue, Linan</creatorcontrib><creatorcontrib>Zhang, Haorui</creatorcontrib><creatorcontrib>Liu, Changmeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Tao</au><au>Cui, Yinan</au><au>Xue, Linan</au><au>Zhang, Haorui</au><au>Liu, Changmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliminating microstructure and mechanical anisotropy of Ti-6.5Al-2Zr-1Mo-1 V manufactured by hot-wire arc additive manufacturing through boron addition</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>56</volume><issue>21</issue><spage>12438</spage><epage>12454</epage><pages>12438-12454</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Hot-wire arc additive manufacturing (HWAAM) raises new opportunities to fabricate large-scale integral titanium components due to its high deposition rate. However, microstructural heterogeneity and mechanical anisotropy are critical issues for the wide application of HWAAM. This study took Ti-6.5Al-2Zr-1Mo-1V as an example to demonstrate that these two issues can be alleviated through tuning the alloy composition. Boron addition (0.1wt.%) led to the formation of TiB whiskers, and most of the whiskers densely clustered along the β grain boundaries. Boron addition was effective in the β grain refinement and texture weakening, which contributed to the reduction of α phase heterogeneity. The mechanical anisotropy was significantly reduced because of the elimination of the microstructural heterogeneity, especially the elimination of the coarse columnar β grains and the continuous grain boundary α phase. The tensile properties of the boron modified part were slightly poorer than that of the unmodified part, because the separation of the TiB aggregates led to the premature failure of the modified part. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06012-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8004-9052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-07, Vol.56 (21), p.12438-12454
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2522969861
source SpringerLink Journals - AutoHoldings
subjects Additive manufacturing
Anisotropy
Boron
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Grain boundaries
Grain refinement
Heterogeneity
Materials Science
Metals & Corrosion
Microstructure
Polymer Sciences
Solid Mechanics
Tensile properties
Titanium
Whiskers (metals)
Wire
title Eliminating microstructure and mechanical anisotropy of Ti-6.5Al-2Zr-1Mo-1 V manufactured by hot-wire arc additive manufacturing through boron addition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliminating%20microstructure%20and%20mechanical%20anisotropy%20of%20Ti-6.5Al-2Zr-1Mo-1%C2%A0V%20manufactured%20by%20hot-wire%20arc%20additive%20manufacturing%20through%20boron%20addition&rft.jtitle=Journal%20of%20materials%20science&rft.au=Lu,%20Tao&rft.date=2021-07-01&rft.volume=56&rft.issue=21&rft.spage=12438&rft.epage=12454&rft.pages=12438-12454&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06012-y&rft_dat=%3Cproquest_cross%3E2522969861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522969861&rft_id=info:pmid/&rfr_iscdi=true