Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir

A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbonates and evaporites 2019-06, Vol.34 (2), p.349-358
Hauptverfasser: Mohebian, Reza, Riahi, Mohammad Ali, Kadkhodaie, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 2
container_start_page 349
container_title Carbonates and evaporites
container_volume 34
creator Mohebian, Reza
Riahi, Mohammad Ali
Kadkhodaie, Ali
description A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube.
doi_str_mv 10.1007/s13146-017-0393-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522968541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522968541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</originalsourceid><addsrcrecordid>eNp1UU2P0zAQjRBIlIUfwG0krmSx48RJjquKQqVdOLB7jqbxuPUqsYvt0E3_2f47XILEidNIo_cx816WvefsmjNWfwpc8FLmjNc5E63I5xfZijd1k1cFL15mK9a0PC-qSr7O3oTwyJhsy7ZdZc_rA3rsI3lzxmicBafhMCuP02B60IM7wWRNDKC9GyGQCWPaY4ze7KZIAdAqONEwgMKIsMNACpIMgqUT6Ol8nuHoXU9q8gRTMHYPN9822x9_iJv1HeCwd97Ewxg-Aj3heBxoMUMLW4_WpNmj3zmLkcBTIP_LGf82e6VxCPTu77zKHjaf79df89vvX7brm9schWhj3teqkEJLlaJpFZNCMVYVKay6JtIpBU6oUNdl1ZZKs4QUKJHtGtkwISUXV9mHRTd98XOiELtHN3mbLLuiKopWNlV5QfEF1XsXgifdHb0Z0c8dZ92loW5pqEtndJeGujlxioUTEtbuyf9T_j_pN-Q9lx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522968541</pqid></control><display><type>article</type><title>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</title><source>Springer Nature - Complete Springer Journals</source><creator>Mohebian, Reza ; Riahi, Mohammad Ali ; Kadkhodaie, Ali</creator><creatorcontrib>Mohebian, Reza ; Riahi, Mohammad Ali ; Kadkhodaie, Ali</creatorcontrib><description>A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube.</description><identifier>ISSN: 0891-2556</identifier><identifier>EISSN: 1878-5212</identifier><identifier>DOI: 10.1007/s13146-017-0393-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Artificial neural networks ; Carbonates ; Clustering ; Earth and Environmental Science ; Earth Sciences ; Fuzzy logic ; Fuzzy systems ; Gas fields ; Geology ; Methods ; Mineral Resources ; Mineralogy ; Neural networks ; Oil and gas fields ; Original Article ; Seismic data ; Well data</subject><ispartof>Carbonates and evaporites, 2019-06, Vol.34 (2), p.349-358</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</citedby><cites>FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13146-017-0393-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13146-017-0393-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Mohebian, Reza</creatorcontrib><creatorcontrib>Riahi, Mohammad Ali</creatorcontrib><creatorcontrib>Kadkhodaie, Ali</creatorcontrib><title>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</title><title>Carbonates and evaporites</title><addtitle>Carbonates Evaporites</addtitle><description>A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Carbonates</subject><subject>Clustering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Gas fields</subject><subject>Geology</subject><subject>Methods</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Neural networks</subject><subject>Oil and gas fields</subject><subject>Original Article</subject><subject>Seismic data</subject><subject>Well data</subject><issn>0891-2556</issn><issn>1878-5212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UU2P0zAQjRBIlIUfwG0krmSx48RJjquKQqVdOLB7jqbxuPUqsYvt0E3_2f47XILEidNIo_cx816WvefsmjNWfwpc8FLmjNc5E63I5xfZijd1k1cFL15mK9a0PC-qSr7O3oTwyJhsy7ZdZc_rA3rsI3lzxmicBafhMCuP02B60IM7wWRNDKC9GyGQCWPaY4ze7KZIAdAqONEwgMKIsMNACpIMgqUT6Ol8nuHoXU9q8gRTMHYPN9822x9_iJv1HeCwd97Ewxg-Aj3heBxoMUMLW4_WpNmj3zmLkcBTIP_LGf82e6VxCPTu77zKHjaf79df89vvX7brm9schWhj3teqkEJLlaJpFZNCMVYVKay6JtIpBU6oUNdl1ZZKs4QUKJHtGtkwISUXV9mHRTd98XOiELtHN3mbLLuiKopWNlV5QfEF1XsXgifdHb0Z0c8dZ92loW5pqEtndJeGujlxioUTEtbuyf9T_j_pN-Q9lx8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Mohebian, Reza</creator><creator>Riahi, Mohammad Ali</creator><creator>Kadkhodaie, Ali</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190601</creationdate><title>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</title><author>Mohebian, Reza ; Riahi, Mohammad Ali ; Kadkhodaie, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Carbonates</topic><topic>Clustering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Gas fields</topic><topic>Geology</topic><topic>Methods</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Neural networks</topic><topic>Oil and gas fields</topic><topic>Original Article</topic><topic>Seismic data</topic><topic>Well data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohebian, Reza</creatorcontrib><creatorcontrib>Riahi, Mohammad Ali</creatorcontrib><creatorcontrib>Kadkhodaie, Ali</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Carbonates and evaporites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohebian, Reza</au><au>Riahi, Mohammad Ali</au><au>Kadkhodaie, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</atitle><jtitle>Carbonates and evaporites</jtitle><stitle>Carbonates Evaporites</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>349</spage><epage>358</epage><pages>349-358</pages><issn>0891-2556</issn><eissn>1878-5212</eissn><abstract>A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13146-017-0393-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-2556
ispartof Carbonates and evaporites, 2019-06, Vol.34 (2), p.349-358
issn 0891-2556
1878-5212
language eng
recordid cdi_proquest_journals_2522968541
source Springer Nature - Complete Springer Journals
subjects Adaptive systems
Algorithms
Artificial neural networks
Carbonates
Clustering
Earth and Environmental Science
Earth Sciences
Fuzzy logic
Fuzzy systems
Gas fields
Geology
Methods
Mineral Resources
Mineralogy
Neural networks
Oil and gas fields
Original Article
Seismic data
Well data
title Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20hydraulic%20flow%20units%20from%20seismic%20attributes%20and%20well%20data%20based%20on%20a%20new%20fuzzy%20procedure%20using%20ANFIS%20and%20FCM%20algorithms,%20example%20from%20an%20Iranian%20carbonate%20reservoir&rft.jtitle=Carbonates%20and%20evaporites&rft.au=Mohebian,%20Reza&rft.date=2019-06-01&rft.volume=34&rft.issue=2&rft.spage=349&rft.epage=358&rft.pages=349-358&rft.issn=0891-2556&rft.eissn=1878-5212&rft_id=info:doi/10.1007/s13146-017-0393-y&rft_dat=%3Cproquest_cross%3E2522968541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522968541&rft_id=info:pmid/&rfr_iscdi=true