Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir
A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current...
Gespeichert in:
Veröffentlicht in: | Carbonates and evaporites 2019-06, Vol.34 (2), p.349-358 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 2 |
container_start_page | 349 |
container_title | Carbonates and evaporites |
container_volume | 34 |
creator | Mohebian, Reza Riahi, Mohammad Ali Kadkhodaie, Ali |
description | A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube. |
doi_str_mv | 10.1007/s13146-017-0393-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522968541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522968541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</originalsourceid><addsrcrecordid>eNp1UU2P0zAQjRBIlIUfwG0krmSx48RJjquKQqVdOLB7jqbxuPUqsYvt0E3_2f47XILEidNIo_cx816WvefsmjNWfwpc8FLmjNc5E63I5xfZijd1k1cFL15mK9a0PC-qSr7O3oTwyJhsy7ZdZc_rA3rsI3lzxmicBafhMCuP02B60IM7wWRNDKC9GyGQCWPaY4ze7KZIAdAqONEwgMKIsMNACpIMgqUT6Ol8nuHoXU9q8gRTMHYPN9822x9_iJv1HeCwd97Ewxg-Aj3heBxoMUMLW4_WpNmj3zmLkcBTIP_LGf82e6VxCPTu77zKHjaf79df89vvX7brm9schWhj3teqkEJLlaJpFZNCMVYVKay6JtIpBU6oUNdl1ZZKs4QUKJHtGtkwISUXV9mHRTd98XOiELtHN3mbLLuiKopWNlV5QfEF1XsXgifdHb0Z0c8dZ92loW5pqEtndJeGujlxioUTEtbuyf9T_j_pN-Q9lx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522968541</pqid></control><display><type>article</type><title>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</title><source>Springer Nature - Complete Springer Journals</source><creator>Mohebian, Reza ; Riahi, Mohammad Ali ; Kadkhodaie, Ali</creator><creatorcontrib>Mohebian, Reza ; Riahi, Mohammad Ali ; Kadkhodaie, Ali</creatorcontrib><description>A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube.</description><identifier>ISSN: 0891-2556</identifier><identifier>EISSN: 1878-5212</identifier><identifier>DOI: 10.1007/s13146-017-0393-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Artificial neural networks ; Carbonates ; Clustering ; Earth and Environmental Science ; Earth Sciences ; Fuzzy logic ; Fuzzy systems ; Gas fields ; Geology ; Methods ; Mineral Resources ; Mineralogy ; Neural networks ; Oil and gas fields ; Original Article ; Seismic data ; Well data</subject><ispartof>Carbonates and evaporites, 2019-06, Vol.34 (2), p.349-358</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</citedby><cites>FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13146-017-0393-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13146-017-0393-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Mohebian, Reza</creatorcontrib><creatorcontrib>Riahi, Mohammad Ali</creatorcontrib><creatorcontrib>Kadkhodaie, Ali</creatorcontrib><title>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</title><title>Carbonates and evaporites</title><addtitle>Carbonates Evaporites</addtitle><description>A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Carbonates</subject><subject>Clustering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Gas fields</subject><subject>Geology</subject><subject>Methods</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Neural networks</subject><subject>Oil and gas fields</subject><subject>Original Article</subject><subject>Seismic data</subject><subject>Well data</subject><issn>0891-2556</issn><issn>1878-5212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UU2P0zAQjRBIlIUfwG0krmSx48RJjquKQqVdOLB7jqbxuPUqsYvt0E3_2f47XILEidNIo_cx816WvefsmjNWfwpc8FLmjNc5E63I5xfZijd1k1cFL15mK9a0PC-qSr7O3oTwyJhsy7ZdZc_rA3rsI3lzxmicBafhMCuP02B60IM7wWRNDKC9GyGQCWPaY4ze7KZIAdAqONEwgMKIsMNACpIMgqUT6Ol8nuHoXU9q8gRTMHYPN9822x9_iJv1HeCwd97Ewxg-Aj3heBxoMUMLW4_WpNmj3zmLkcBTIP_LGf82e6VxCPTu77zKHjaf79df89vvX7brm9schWhj3teqkEJLlaJpFZNCMVYVKay6JtIpBU6oUNdl1ZZKs4QUKJHtGtkwISUXV9mHRTd98XOiELtHN3mbLLuiKopWNlV5QfEF1XsXgifdHb0Z0c8dZ92loW5pqEtndJeGujlxioUTEtbuyf9T_j_pN-Q9lx8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Mohebian, Reza</creator><creator>Riahi, Mohammad Ali</creator><creator>Kadkhodaie, Ali</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190601</creationdate><title>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</title><author>Mohebian, Reza ; Riahi, Mohammad Ali ; Kadkhodaie, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-c7d263f6d0179d063d005231477eef6941eadaf74594df03f63a6a0b868036613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Carbonates</topic><topic>Clustering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Gas fields</topic><topic>Geology</topic><topic>Methods</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Neural networks</topic><topic>Oil and gas fields</topic><topic>Original Article</topic><topic>Seismic data</topic><topic>Well data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohebian, Reza</creatorcontrib><creatorcontrib>Riahi, Mohammad Ali</creatorcontrib><creatorcontrib>Kadkhodaie, Ali</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Carbonates and evaporites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohebian, Reza</au><au>Riahi, Mohammad Ali</au><au>Kadkhodaie, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir</atitle><jtitle>Carbonates and evaporites</jtitle><stitle>Carbonates Evaporites</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>349</spage><epage>358</epage><pages>349-358</pages><issn>0891-2556</issn><eissn>1878-5212</eissn><abstract>A robust methodology to determine geological facies in oil and gas fields is the integration of seismic attributes and well data to estimate flow zone indicator (FZI). Recently, the application of fuzzy and Neuro-Fuzzy approach regarding this purpose has enjoyed an increasing attention. The current study was carried out in the Surmeh (Arab) formation at Persian Gulf basin, Southern Iran. A Nero-fuzzy system was applied to estimate FZI cube from seismic attributes. To do so, core data and seismic data from four wells were imported to ANFIS system. Subsequently, the outcomes were compared with those of probabilistic neural network (PNN). Finally, a fuzzy C-Means clustering (FCM) technique was applied to characterize different hydraulic flow units (HFUs). The results of this study demonstrate that adaptive neuro-fuzzy inference systems (ANFIS) turn out to be successful in modeling FZI from seismic attributes and well data for a faraway well location. Moreover, the results achieved suggest that using the FCM technique is an efficient methodology to determine different HFUs from FZI cube.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13146-017-0393-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-2556 |
ispartof | Carbonates and evaporites, 2019-06, Vol.34 (2), p.349-358 |
issn | 0891-2556 1878-5212 |
language | eng |
recordid | cdi_proquest_journals_2522968541 |
source | Springer Nature - Complete Springer Journals |
subjects | Adaptive systems Algorithms Artificial neural networks Carbonates Clustering Earth and Environmental Science Earth Sciences Fuzzy logic Fuzzy systems Gas fields Geology Methods Mineral Resources Mineralogy Neural networks Oil and gas fields Original Article Seismic data Well data |
title | Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20hydraulic%20flow%20units%20from%20seismic%20attributes%20and%20well%20data%20based%20on%20a%20new%20fuzzy%20procedure%20using%20ANFIS%20and%20FCM%20algorithms,%20example%20from%20an%20Iranian%20carbonate%20reservoir&rft.jtitle=Carbonates%20and%20evaporites&rft.au=Mohebian,%20Reza&rft.date=2019-06-01&rft.volume=34&rft.issue=2&rft.spage=349&rft.epage=358&rft.pages=349-358&rft.issn=0891-2556&rft.eissn=1878-5212&rft_id=info:doi/10.1007/s13146-017-0393-y&rft_dat=%3Cproquest_cross%3E2522968541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522968541&rft_id=info:pmid/&rfr_iscdi=true |