Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid
The corrosion mechanism of as-cast, heat-treated (H400) and extruded (E30, E60, E90) Mg-3Zn-1Mn-1Y alloys with different microstructure is investigated by scan electron microscope (SEM), scan Kelvin probe force microscope (SKPFM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance ana...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-07, Vol.56 (21), p.12394-12411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12411 |
---|---|
container_issue | 21 |
container_start_page | 12394 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Cao, Xin Xu, Chunxiang Zhang, Zhengwei Yang, Wenfu Zhang, Jinshan |
description | The corrosion mechanism of as-cast, heat-treated (H400) and extruded (E30, E60, E90) Mg-3Zn-1Mn-1Y alloys with different microstructure is investigated by scan electron microscope (SEM), scan Kelvin probe force microscope (SKPFM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance analysis and immersion experiments equipped with a dynamic corrosion device. The relevant results are as follows: continuously strip-like I-phase (Mg
3
Zn
6
Y) in as-cast alloy distributed along the grain boundary played a significant obstacle impact during corrosion, whereas this capability is weakened after heat treatment and large plastic extrusion deformation. However, extrusion deformation significantly improved alloy corrosion performance, the extruded E30 alloy performed superior anti-corrosion behavior among the three extruded alloys owing to the smaller potential difference between I-phase (2.59 V) and DRXed (2.51 V) or un-DRXed (2.54 V) grains. In addition, the corrosion obstacle effect of grains boundaries (the grain boundary has higher potential than the Mg substrate), dense corrosion products film protection (isolate the substrate from contact with SBF) and typical basal texture (lower reactivity of base atoms) have great influence on corrosion behavior. |
doi_str_mv | 10.1007/s10853-021-06091-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522968386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661158038</galeid><sourcerecordid>A661158038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-642105bf00a6d1eb74e8e559c1b0f5587dc77c98eca590dcd543af9fbea362ee3</originalsourceid><addsrcrecordid>eNp9kcuKFDEUhgtRsB19AVcBVy4y5lKpy3IYRm2YQfCy0E1IJSfVGaqSNkkNXU_jq5q2BJmNhBAI33dOcv6qek3JJSWkfZco6QTHhFFMGtJTfHpS7ahoOa47wp9WO0IYw6xu6PPqRUr3hBDRMrqrft1YCzqjYNEeHw8qAZpDPB7CFMYVKW_Q7HQMKcdF5yUCylH5ZEOcVXbBI-fR4MIMxmk1obsR8x8e07uyvyM1TWFNqFAPLseADIxRmc0b4KAeXIjnAmb1qnRByc3LpDIYNASzIjstzrysnlk1JXj197yovr2_-Xr9Ed9--rC_vrrFmvcs46ZmlIjBEqIaQ2Foa-hAiF7TgVghutbottV9B1qJnhhtRM2V7e0AijcMgF9Ub7a6xxh-LpCyvA9L9KWlZIKxvul41xTqcqNGNYF03oYyDl2WgfKB4MG6cn_VNJSKMveuCG8fCYXJcMqjWlKS-y-fH7NsY8_zThGsPEY3q7hKSuQ5ZbmlLEvK8k_K8lQkvkmpwH6E-O_d_7F-A0oMrRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522968386</pqid></control><display><type>article</type><title>Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid</title><source>Springer Nature - Complete Springer Journals</source><creator>Cao, Xin ; Xu, Chunxiang ; Zhang, Zhengwei ; Yang, Wenfu ; Zhang, Jinshan</creator><creatorcontrib>Cao, Xin ; Xu, Chunxiang ; Zhang, Zhengwei ; Yang, Wenfu ; Zhang, Jinshan</creatorcontrib><description>The corrosion mechanism of as-cast, heat-treated (H400) and extruded (E30, E60, E90) Mg-3Zn-1Mn-1Y alloys with different microstructure is investigated by scan electron microscope (SEM), scan Kelvin probe force microscope (SKPFM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance analysis and immersion experiments equipped with a dynamic corrosion device. The relevant results are as follows: continuously strip-like I-phase (Mg
3
Zn
6
Y) in as-cast alloy distributed along the grain boundary played a significant obstacle impact during corrosion, whereas this capability is weakened after heat treatment and large plastic extrusion deformation. However, extrusion deformation significantly improved alloy corrosion performance, the extruded E30 alloy performed superior anti-corrosion behavior among the three extruded alloys owing to the smaller potential difference between I-phase (2.59 V) and DRXed (2.51 V) or un-DRXed (2.54 V) grains. In addition, the corrosion obstacle effect of grains boundaries (the grain boundary has higher potential than the Mg substrate), dense corrosion products film protection (isolate the substrate from contact with SBF) and typical basal texture (lower reactivity of base atoms) have great influence on corrosion behavior.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06091-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Analysis ; Barriers ; Biomedical materials ; Body fluids ; Casting alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Continuous casting ; Corrosion ; Corrosion and anti-corrosives ; Corrosion effects ; Corrosion mechanisms ; Corrosion prevention ; Corrosion products ; Crystallography and Scattering Methods ; Deformation ; Degassing of metals ; Electrochemical impedance spectroscopy ; Grain boundaries ; Heat treatment ; In vitro methods and tests ; Materials for Life Sciences ; Materials Science ; Metals ; Microstructure ; Morphology ; Photoelectrons ; Polymer Sciences ; Solid Mechanics ; Specialty metals industry ; Substrates ; X ray photoelectron spectroscopy ; X-ray spectroscopy ; Zinc compounds</subject><ispartof>Journal of materials science, 2021-07, Vol.56 (21), p.12394-12411</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-642105bf00a6d1eb74e8e559c1b0f5587dc77c98eca590dcd543af9fbea362ee3</citedby><cites>FETCH-LOGICAL-c392t-642105bf00a6d1eb74e8e559c1b0f5587dc77c98eca590dcd543af9fbea362ee3</cites><orcidid>0000-0002-6257-307X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06091-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06091-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Xu, Chunxiang</creatorcontrib><creatorcontrib>Zhang, Zhengwei</creatorcontrib><creatorcontrib>Yang, Wenfu</creatorcontrib><creatorcontrib>Zhang, Jinshan</creatorcontrib><title>Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The corrosion mechanism of as-cast, heat-treated (H400) and extruded (E30, E60, E90) Mg-3Zn-1Mn-1Y alloys with different microstructure is investigated by scan electron microscope (SEM), scan Kelvin probe force microscope (SKPFM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance analysis and immersion experiments equipped with a dynamic corrosion device. The relevant results are as follows: continuously strip-like I-phase (Mg
3
Zn
6
Y) in as-cast alloy distributed along the grain boundary played a significant obstacle impact during corrosion, whereas this capability is weakened after heat treatment and large plastic extrusion deformation. However, extrusion deformation significantly improved alloy corrosion performance, the extruded E30 alloy performed superior anti-corrosion behavior among the three extruded alloys owing to the smaller potential difference between I-phase (2.59 V) and DRXed (2.51 V) or un-DRXed (2.54 V) grains. In addition, the corrosion obstacle effect of grains boundaries (the grain boundary has higher potential than the Mg substrate), dense corrosion products film protection (isolate the substrate from contact with SBF) and typical basal texture (lower reactivity of base atoms) have great influence on corrosion behavior.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Barriers</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Casting alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Continuous casting</subject><subject>Corrosion</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion effects</subject><subject>Corrosion mechanisms</subject><subject>Corrosion prevention</subject><subject>Corrosion products</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Degassing of metals</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Grain boundaries</subject><subject>Heat treatment</subject><subject>In vitro methods and tests</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Substrates</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><subject>Zinc compounds</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kcuKFDEUhgtRsB19AVcBVy4y5lKpy3IYRm2YQfCy0E1IJSfVGaqSNkkNXU_jq5q2BJmNhBAI33dOcv6qek3JJSWkfZco6QTHhFFMGtJTfHpS7ahoOa47wp9WO0IYw6xu6PPqRUr3hBDRMrqrft1YCzqjYNEeHw8qAZpDPB7CFMYVKW_Q7HQMKcdF5yUCylH5ZEOcVXbBI-fR4MIMxmk1obsR8x8e07uyvyM1TWFNqFAPLseADIxRmc0b4KAeXIjnAmb1qnRByc3LpDIYNASzIjstzrysnlk1JXj197yovr2_-Xr9Ed9--rC_vrrFmvcs46ZmlIjBEqIaQ2Foa-hAiF7TgVghutbottV9B1qJnhhtRM2V7e0AijcMgF9Ub7a6xxh-LpCyvA9L9KWlZIKxvul41xTqcqNGNYF03oYyDl2WgfKB4MG6cn_VNJSKMveuCG8fCYXJcMqjWlKS-y-fH7NsY8_zThGsPEY3q7hKSuQ5ZbmlLEvK8k_K8lQkvkmpwH6E-O_d_7F-A0oMrRg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Cao, Xin</creator><creator>Xu, Chunxiang</creator><creator>Zhang, Zhengwei</creator><creator>Yang, Wenfu</creator><creator>Zhang, Jinshan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6257-307X</orcidid></search><sort><creationdate>20210701</creationdate><title>Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid</title><author>Cao, Xin ; Xu, Chunxiang ; Zhang, Zhengwei ; Yang, Wenfu ; Zhang, Jinshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-642105bf00a6d1eb74e8e559c1b0f5587dc77c98eca590dcd543af9fbea362ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Barriers</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Casting alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Continuous casting</topic><topic>Corrosion</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion effects</topic><topic>Corrosion mechanisms</topic><topic>Corrosion prevention</topic><topic>Corrosion products</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Degassing of metals</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Grain boundaries</topic><topic>Heat treatment</topic><topic>In vitro methods and tests</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Substrates</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Xu, Chunxiang</creatorcontrib><creatorcontrib>Zhang, Zhengwei</creatorcontrib><creatorcontrib>Yang, Wenfu</creatorcontrib><creatorcontrib>Zhang, Jinshan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Xin</au><au>Xu, Chunxiang</au><au>Zhang, Zhengwei</au><au>Yang, Wenfu</au><au>Zhang, Jinshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>56</volume><issue>21</issue><spage>12394</spage><epage>12411</epage><pages>12394-12411</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The corrosion mechanism of as-cast, heat-treated (H400) and extruded (E30, E60, E90) Mg-3Zn-1Mn-1Y alloys with different microstructure is investigated by scan electron microscope (SEM), scan Kelvin probe force microscope (SKPFM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance analysis and immersion experiments equipped with a dynamic corrosion device. The relevant results are as follows: continuously strip-like I-phase (Mg
3
Zn
6
Y) in as-cast alloy distributed along the grain boundary played a significant obstacle impact during corrosion, whereas this capability is weakened after heat treatment and large plastic extrusion deformation. However, extrusion deformation significantly improved alloy corrosion performance, the extruded E30 alloy performed superior anti-corrosion behavior among the three extruded alloys owing to the smaller potential difference between I-phase (2.59 V) and DRXed (2.51 V) or un-DRXed (2.54 V) grains. In addition, the corrosion obstacle effect of grains boundaries (the grain boundary has higher potential than the Mg substrate), dense corrosion products film protection (isolate the substrate from contact with SBF) and typical basal texture (lower reactivity of base atoms) have great influence on corrosion behavior.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06091-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6257-307X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-07, Vol.56 (21), p.12394-12411 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2522968386 |
source | Springer Nature - Complete Springer Journals |
subjects | Alloys Analysis Barriers Biomedical materials Body fluids Casting alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Continuous casting Corrosion Corrosion and anti-corrosives Corrosion effects Corrosion mechanisms Corrosion prevention Corrosion products Crystallography and Scattering Methods Deformation Degassing of metals Electrochemical impedance spectroscopy Grain boundaries Heat treatment In vitro methods and tests Materials for Life Sciences Materials Science Metals Microstructure Morphology Photoelectrons Polymer Sciences Solid Mechanics Specialty metals industry Substrates X ray photoelectron spectroscopy X-ray spectroscopy Zinc compounds |
title | Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20I-phase%20morphology%20and%20microstructure%20transformation%20in%20biomedical%20Mg-3Zn-1Mn-1Y%20alloys%20on%20vitro%20degradation%20behavior%20in%20dynamic%20simulated%20body%20fluid&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cao,%20Xin&rft.date=2021-07-01&rft.volume=56&rft.issue=21&rft.spage=12394&rft.epage=12411&rft.pages=12394-12411&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06091-x&rft_dat=%3Cgale_proqu%3EA661158038%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522968386&rft_id=info:pmid/&rft_galeid=A661158038&rfr_iscdi=true |