Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication

Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2021-05, Vol.20 (5), p.3122-3136
Hauptverfasser: Wang, Yuyang, Myers, Nitin Jonathan, Gonzalez-Prelcic, Nuria, Heath, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3136
container_issue 5
container_start_page 3122
container_title IEEE transactions on wireless communications
container_volume 20
creator Wang, Yuyang
Myers, Nitin Jonathan
Gonzalez-Prelcic, Nuria
Heath, Robert W.
description Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.
doi_str_mv 10.1109/TWC.2020.3047547
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2522918665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316960</ieee_id><sourcerecordid>2522918665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC56352CSboxa_oNBDq8VTyKazGu1m12RX8N-bpcXTDC_POwMPQpcEzwjB6ma9mc8opnjGcCF5IY_QhHBe5pQW5fG4M5ETKsUpOovxE2MiBecT9LZyPeSrDqyrnc2Wfuc8ZPO26QLE6H4guwPTpGALVdt-ZQswwTv_njmfNc3GJOAVPpwddiaMtWbwzpretf4cndRmF-HiMKfo5eF-PX_KF8vH5_ntIrdUkT6voLbSqMpwLmoqCbOiACq4LUrMlFAGV6LmpQCG2dZyxaWUKWWVEJUquWJTdL2_24X2e4DY6892CD691JTT9KMUgicK7ykb2hgD1LoLrjHhVxOsR4E6CdSjQH0QmCpX-4oDgH9cMSKUwOwPUVBrgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522918665</pqid></control><display><type>article</type><title>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yuyang ; Myers, Nitin Jonathan ; Gonzalez-Prelcic, Nuria ; Heath, Robert W.</creator><creatorcontrib>Wang, Yuyang ; Myers, Nitin Jonathan ; Gonzalez-Prelcic, Nuria ; Heath, Robert W.</creatorcontrib><description>Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2020.3047547</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alignment ; Antenna arrays ; beamforming ; Channel estimation ; Communication ; compressed sensing (CS) ; Confidence ; Data retrieval ; Distance learning ; Machine learning ; Millimeter wave communication ; Millimeter waves ; mm-Wave ; Optimization ; Ray tracing ; Sensor arrays ; Statistics ; Training ; Vehicles ; Vehicular communication ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-05, Vol.20 (5), p.3122-3136</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</citedby><cites>FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</cites><orcidid>0000-0003-4268-1396 ; 0000-0002-4666-5628 ; 0000-0002-5681-819X ; 0000-0002-0828-8454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Myers, Nitin Jonathan</creatorcontrib><creatorcontrib>Gonzalez-Prelcic, Nuria</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><title>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Antenna arrays</subject><subject>beamforming</subject><subject>Channel estimation</subject><subject>Communication</subject><subject>compressed sensing (CS)</subject><subject>Confidence</subject><subject>Data retrieval</subject><subject>Distance learning</subject><subject>Machine learning</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>mm-Wave</subject><subject>Optimization</subject><subject>Ray tracing</subject><subject>Sensor arrays</subject><subject>Statistics</subject><subject>Training</subject><subject>Vehicles</subject><subject>Vehicular communication</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC56352CSboxa_oNBDq8VTyKazGu1m12RX8N-bpcXTDC_POwMPQpcEzwjB6ma9mc8opnjGcCF5IY_QhHBe5pQW5fG4M5ETKsUpOovxE2MiBecT9LZyPeSrDqyrnc2Wfuc8ZPO26QLE6H4guwPTpGALVdt-ZQswwTv_njmfNc3GJOAVPpwddiaMtWbwzpretf4cndRmF-HiMKfo5eF-PX_KF8vH5_ntIrdUkT6voLbSqMpwLmoqCbOiACq4LUrMlFAGV6LmpQCG2dZyxaWUKWWVEJUquWJTdL2_24X2e4DY6892CD691JTT9KMUgicK7ykb2hgD1LoLrjHhVxOsR4E6CdSjQH0QmCpX-4oDgH9cMSKUwOwPUVBrgw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wang, Yuyang</creator><creator>Myers, Nitin Jonathan</creator><creator>Gonzalez-Prelcic, Nuria</creator><creator>Heath, Robert W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4268-1396</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><orcidid>https://orcid.org/0000-0002-5681-819X</orcidid><orcidid>https://orcid.org/0000-0002-0828-8454</orcidid></search><sort><creationdate>202105</creationdate><title>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</title><author>Wang, Yuyang ; Myers, Nitin Jonathan ; Gonzalez-Prelcic, Nuria ; Heath, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Antenna arrays</topic><topic>beamforming</topic><topic>Channel estimation</topic><topic>Communication</topic><topic>compressed sensing (CS)</topic><topic>Confidence</topic><topic>Data retrieval</topic><topic>Distance learning</topic><topic>Machine learning</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>mm-Wave</topic><topic>Optimization</topic><topic>Ray tracing</topic><topic>Sensor arrays</topic><topic>Statistics</topic><topic>Training</topic><topic>Vehicles</topic><topic>Vehicular communication</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Myers, Nitin Jonathan</creatorcontrib><creatorcontrib>Gonzalez-Prelcic, Nuria</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yuyang</au><au>Myers, Nitin Jonathan</au><au>Gonzalez-Prelcic, Nuria</au><au>Heath, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-05</date><risdate>2021</risdate><volume>20</volume><issue>5</issue><spage>3122</spage><epage>3136</epage><pages>3122-3136</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2020.3047547</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4268-1396</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><orcidid>https://orcid.org/0000-0002-5681-819X</orcidid><orcidid>https://orcid.org/0000-0002-0828-8454</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2021-05, Vol.20 (5), p.3122-3136
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2522918665
source IEEE Electronic Library (IEL)
subjects Algorithms
Alignment
Antenna arrays
beamforming
Channel estimation
Communication
compressed sensing (CS)
Confidence
Data retrieval
Distance learning
Machine learning
Millimeter wave communication
Millimeter waves
mm-Wave
Optimization
Ray tracing
Sensor arrays
Statistics
Training
Vehicles
Vehicular communication
Wireless communication
title Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Specific%20Online%20Compressive%20Beam%20Codebook%20Learning%20in%20mmWave%20Vehicular%20Communication&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Wang,%20Yuyang&rft.date=2021-05&rft.volume=20&rft.issue=5&rft.spage=3122&rft.epage=3136&rft.pages=3122-3136&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2020.3047547&rft_dat=%3Cproquest_RIE%3E2522918665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522918665&rft_id=info:pmid/&rft_ieee_id=9316960&rfr_iscdi=true