Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication
Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a nov...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2021-05, Vol.20 (5), p.3122-3136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3136 |
---|---|
container_issue | 5 |
container_start_page | 3122 |
container_title | IEEE transactions on wireless communications |
container_volume | 20 |
creator | Wang, Yuyang Myers, Nitin Jonathan Gonzalez-Prelcic, Nuria Heath, Robert W. |
description | Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics. |
doi_str_mv | 10.1109/TWC.2020.3047547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2522918665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316960</ieee_id><sourcerecordid>2522918665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC56352CSboxa_oNBDq8VTyKazGu1m12RX8N-bpcXTDC_POwMPQpcEzwjB6ma9mc8opnjGcCF5IY_QhHBe5pQW5fG4M5ETKsUpOovxE2MiBecT9LZyPeSrDqyrnc2Wfuc8ZPO26QLE6H4guwPTpGALVdt-ZQswwTv_njmfNc3GJOAVPpwddiaMtWbwzpretf4cndRmF-HiMKfo5eF-PX_KF8vH5_ntIrdUkT6voLbSqMpwLmoqCbOiACq4LUrMlFAGV6LmpQCG2dZyxaWUKWWVEJUquWJTdL2_24X2e4DY6892CD691JTT9KMUgicK7ykb2hgD1LoLrjHhVxOsR4E6CdSjQH0QmCpX-4oDgH9cMSKUwOwPUVBrgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522918665</pqid></control><display><type>article</type><title>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yuyang ; Myers, Nitin Jonathan ; Gonzalez-Prelcic, Nuria ; Heath, Robert W.</creator><creatorcontrib>Wang, Yuyang ; Myers, Nitin Jonathan ; Gonzalez-Prelcic, Nuria ; Heath, Robert W.</creatorcontrib><description>Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2020.3047547</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alignment ; Antenna arrays ; beamforming ; Channel estimation ; Communication ; compressed sensing (CS) ; Confidence ; Data retrieval ; Distance learning ; Machine learning ; Millimeter wave communication ; Millimeter waves ; mm-Wave ; Optimization ; Ray tracing ; Sensor arrays ; Statistics ; Training ; Vehicles ; Vehicular communication ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-05, Vol.20 (5), p.3122-3136</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</citedby><cites>FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</cites><orcidid>0000-0003-4268-1396 ; 0000-0002-4666-5628 ; 0000-0002-5681-819X ; 0000-0002-0828-8454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Myers, Nitin Jonathan</creatorcontrib><creatorcontrib>Gonzalez-Prelcic, Nuria</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><title>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Antenna arrays</subject><subject>beamforming</subject><subject>Channel estimation</subject><subject>Communication</subject><subject>compressed sensing (CS)</subject><subject>Confidence</subject><subject>Data retrieval</subject><subject>Distance learning</subject><subject>Machine learning</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>mm-Wave</subject><subject>Optimization</subject><subject>Ray tracing</subject><subject>Sensor arrays</subject><subject>Statistics</subject><subject>Training</subject><subject>Vehicles</subject><subject>Vehicular communication</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC56352CSboxa_oNBDq8VTyKazGu1m12RX8N-bpcXTDC_POwMPQpcEzwjB6ma9mc8opnjGcCF5IY_QhHBe5pQW5fG4M5ETKsUpOovxE2MiBecT9LZyPeSrDqyrnc2Wfuc8ZPO26QLE6H4guwPTpGALVdt-ZQswwTv_njmfNc3GJOAVPpwddiaMtWbwzpretf4cndRmF-HiMKfo5eF-PX_KF8vH5_ntIrdUkT6voLbSqMpwLmoqCbOiACq4LUrMlFAGV6LmpQCG2dZyxaWUKWWVEJUquWJTdL2_24X2e4DY6892CD691JTT9KMUgicK7ykb2hgD1LoLrjHhVxOsR4E6CdSjQH0QmCpX-4oDgH9cMSKUwOwPUVBrgw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wang, Yuyang</creator><creator>Myers, Nitin Jonathan</creator><creator>Gonzalez-Prelcic, Nuria</creator><creator>Heath, Robert W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4268-1396</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><orcidid>https://orcid.org/0000-0002-5681-819X</orcidid><orcidid>https://orcid.org/0000-0002-0828-8454</orcidid></search><sort><creationdate>202105</creationdate><title>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</title><author>Wang, Yuyang ; Myers, Nitin Jonathan ; Gonzalez-Prelcic, Nuria ; Heath, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-befc7a9ba556f2713c64e265c4803969a0b6f586e303dc59577769a3b66b98593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Antenna arrays</topic><topic>beamforming</topic><topic>Channel estimation</topic><topic>Communication</topic><topic>compressed sensing (CS)</topic><topic>Confidence</topic><topic>Data retrieval</topic><topic>Distance learning</topic><topic>Machine learning</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>mm-Wave</topic><topic>Optimization</topic><topic>Ray tracing</topic><topic>Sensor arrays</topic><topic>Statistics</topic><topic>Training</topic><topic>Vehicles</topic><topic>Vehicular communication</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Myers, Nitin Jonathan</creatorcontrib><creatorcontrib>Gonzalez-Prelcic, Nuria</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yuyang</au><au>Myers, Nitin Jonathan</au><au>Gonzalez-Prelcic, Nuria</au><au>Heath, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-05</date><risdate>2021</risdate><volume>20</volume><issue>5</issue><spage>3122</spage><epage>3136</epage><pages>3122-3136</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2020.3047547</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4268-1396</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><orcidid>https://orcid.org/0000-0002-5681-819X</orcidid><orcidid>https://orcid.org/0000-0002-0828-8454</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2021-05, Vol.20 (5), p.3122-3136 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2522918665 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alignment Antenna arrays beamforming Channel estimation Communication compressed sensing (CS) Confidence Data retrieval Distance learning Machine learning Millimeter wave communication Millimeter waves mm-Wave Optimization Ray tracing Sensor arrays Statistics Training Vehicles Vehicular communication Wireless communication |
title | Site-Specific Online Compressive Beam Codebook Learning in mmWave Vehicular Communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Specific%20Online%20Compressive%20Beam%20Codebook%20Learning%20in%20mmWave%20Vehicular%20Communication&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Wang,%20Yuyang&rft.date=2021-05&rft.volume=20&rft.issue=5&rft.spage=3122&rft.epage=3136&rft.pages=3122-3136&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2020.3047547&rft_dat=%3Cproquest_RIE%3E2522918665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522918665&rft_id=info:pmid/&rft_ieee_id=9316960&rfr_iscdi=true |