Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty

The uncertainty of renewable distributed energy (photovoltaic, wind power, etc.) and load demand in the microgrid poses challenges to the economy and safety of microgrid operation. This paper proposes a robust optimization model of microgrid considering uncertainty to take into account the economy a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2021-05, Vol.223, p.120043, Article 120043
Hauptverfasser: Yang, Jun, Su, Changqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120043
container_title Energy (Oxford)
container_volume 223
creator Yang, Jun
Su, Changqi
description The uncertainty of renewable distributed energy (photovoltaic, wind power, etc.) and load demand in the microgrid poses challenges to the economy and safety of microgrid operation. This paper proposes a robust optimization model of microgrid considering uncertainty to take into account the economy and robustness of microgrid operation. A two-stage robust optimization model is established to find a balance between the economy and robustness of microgrid operation. Through the optimization procedure, the robust adjustment parameters for microgrid operation can be obtained. The optimized can effectively balance the economy and robustness. The Benders dual algorithm is used to solve the established two-stage robust optimization model. The CPLEX solver is used to simulate the IEEE39-bus system to verify the feasibility and effectiveness of the method. The simulation results show that the robustness of the system can be achieved by solving the robust adjustment parameters, meanwhile the operating cost can be reduced as much as possible no matter in the buying electricity scenario or in the selling electricity scenario. •A two-stage robust optimization model considering uncertainties is established.•Uncertainty parameters are converted corresponding definite adjustable parameters.•The Benders dual algorithm is used to solve the problem.•The robust adjustment parameters of the microgrid can be obtained.•Achieve the purpose of ensuring both economy and robustness better.
doi_str_mv 10.1016/j.energy.2021.120043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522848504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221002929</els_id><sourcerecordid>2522848504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ee25cd73f05f51d51623d8bf3206f9e5b23c8397f841d587f2bdb1f9e03121bf3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz13z0bTZiyCLX7AgiJ5D2kyWLG2zJqmy_npT6tnThHnnncn7IHRNyYoSWt3uVzBA2B1XjDC6ooyQkp-gBZU1L6pailO0ILwihShLdo4uYtwTQoRcrxeoe_PNGBP2h-R696OT8wP2FveuDX4XnMGNjmBw7oZ85Fs3HWDjYgquGVMWDv4bAt5NH5jNejC489pgA_30HocWQtJuSMdLdGZ1F-Hqry7Rx-PD--a52L4-vWzut0XLeZkKACZaU3NLhBXUCFoxbmRjOSOVXYNoGG8lX9dWllmVtWWNaWhWCKeM5rklupn3HoL_HCEmtfdjGPJJxQRjspQiE1qicp7KSWMMYNUhuF6Ho6JETVzVXs1c1cRVzVyz7W62QU7w5SCo2DrIIY0L0CZlvPt_wS-YJoTp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522848504</pqid></control><display><type>article</type><title>Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Jun ; Su, Changqi</creator><creatorcontrib>Yang, Jun ; Su, Changqi</creatorcontrib><description>The uncertainty of renewable distributed energy (photovoltaic, wind power, etc.) and load demand in the microgrid poses challenges to the economy and safety of microgrid operation. This paper proposes a robust optimization model of microgrid considering uncertainty to take into account the economy and robustness of microgrid operation. A two-stage robust optimization model is established to find a balance between the economy and robustness of microgrid operation. Through the optimization procedure, the robust adjustment parameters for microgrid operation can be obtained. The optimized can effectively balance the economy and robustness. The Benders dual algorithm is used to solve the established two-stage robust optimization model. The CPLEX solver is used to simulate the IEEE39-bus system to verify the feasibility and effectiveness of the method. The simulation results show that the robustness of the system can be achieved by solving the robust adjustment parameters, meanwhile the operating cost can be reduced as much as possible no matter in the buying electricity scenario or in the selling electricity scenario. •A two-stage robust optimization model considering uncertainties is established.•Uncertainty parameters are converted corresponding definite adjustable parameters.•The Benders dual algorithm is used to solve the problem.•The robust adjustment parameters of the microgrid can be obtained.•Achieve the purpose of ensuring both economy and robustness better.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120043</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Benders dual algorithm ; Bending machines ; Distributed generation ; Economics ; Electric power distribution ; Electrical loads ; Electricity ; Mathematical models ; Microgrid ; Operating costs ; Optimization ; Parameter robustness ; Photovoltaics ; Robust equivalent ; Robust optimization ; Robustness ; Stress concentration ; Uncertainty ; Uncertainty parameter ; Wind power</subject><ispartof>Energy (Oxford), 2021-05, Vol.223, p.120043, Article 120043</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ee25cd73f05f51d51623d8bf3206f9e5b23c8397f841d587f2bdb1f9e03121bf3</citedby><cites>FETCH-LOGICAL-c334t-ee25cd73f05f51d51623d8bf3206f9e5b23c8397f841d587f2bdb1f9e03121bf3</cites><orcidid>0000-0003-0599-1416 ; 0000-0002-0869-0275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544221002929$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Su, Changqi</creatorcontrib><title>Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty</title><title>Energy (Oxford)</title><description>The uncertainty of renewable distributed energy (photovoltaic, wind power, etc.) and load demand in the microgrid poses challenges to the economy and safety of microgrid operation. This paper proposes a robust optimization model of microgrid considering uncertainty to take into account the economy and robustness of microgrid operation. A two-stage robust optimization model is established to find a balance between the economy and robustness of microgrid operation. Through the optimization procedure, the robust adjustment parameters for microgrid operation can be obtained. The optimized can effectively balance the economy and robustness. The Benders dual algorithm is used to solve the established two-stage robust optimization model. The CPLEX solver is used to simulate the IEEE39-bus system to verify the feasibility and effectiveness of the method. The simulation results show that the robustness of the system can be achieved by solving the robust adjustment parameters, meanwhile the operating cost can be reduced as much as possible no matter in the buying electricity scenario or in the selling electricity scenario. •A two-stage robust optimization model considering uncertainties is established.•Uncertainty parameters are converted corresponding definite adjustable parameters.•The Benders dual algorithm is used to solve the problem.•The robust adjustment parameters of the microgrid can be obtained.•Achieve the purpose of ensuring both economy and robustness better.</description><subject>Algorithms</subject><subject>Benders dual algorithm</subject><subject>Bending machines</subject><subject>Distributed generation</subject><subject>Economics</subject><subject>Electric power distribution</subject><subject>Electrical loads</subject><subject>Electricity</subject><subject>Mathematical models</subject><subject>Microgrid</subject><subject>Operating costs</subject><subject>Optimization</subject><subject>Parameter robustness</subject><subject>Photovoltaics</subject><subject>Robust equivalent</subject><subject>Robust optimization</subject><subject>Robustness</subject><subject>Stress concentration</subject><subject>Uncertainty</subject><subject>Uncertainty parameter</subject><subject>Wind power</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz13z0bTZiyCLX7AgiJ5D2kyWLG2zJqmy_npT6tnThHnnncn7IHRNyYoSWt3uVzBA2B1XjDC6ooyQkp-gBZU1L6pailO0ILwihShLdo4uYtwTQoRcrxeoe_PNGBP2h-R696OT8wP2FveuDX4XnMGNjmBw7oZ85Fs3HWDjYgquGVMWDv4bAt5NH5jNejC489pgA_30HocWQtJuSMdLdGZ1F-Hqry7Rx-PD--a52L4-vWzut0XLeZkKACZaU3NLhBXUCFoxbmRjOSOVXYNoGG8lX9dWllmVtWWNaWhWCKeM5rklupn3HoL_HCEmtfdjGPJJxQRjspQiE1qicp7KSWMMYNUhuF6Ho6JETVzVXs1c1cRVzVyz7W62QU7w5SCo2DrIIY0L0CZlvPt_wS-YJoTp</recordid><startdate>20210515</startdate><enddate>20210515</enddate><creator>Yang, Jun</creator><creator>Su, Changqi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0599-1416</orcidid><orcidid>https://orcid.org/0000-0002-0869-0275</orcidid></search><sort><creationdate>20210515</creationdate><title>Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty</title><author>Yang, Jun ; Su, Changqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ee25cd73f05f51d51623d8bf3206f9e5b23c8397f841d587f2bdb1f9e03121bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Benders dual algorithm</topic><topic>Bending machines</topic><topic>Distributed generation</topic><topic>Economics</topic><topic>Electric power distribution</topic><topic>Electrical loads</topic><topic>Electricity</topic><topic>Mathematical models</topic><topic>Microgrid</topic><topic>Operating costs</topic><topic>Optimization</topic><topic>Parameter robustness</topic><topic>Photovoltaics</topic><topic>Robust equivalent</topic><topic>Robust optimization</topic><topic>Robustness</topic><topic>Stress concentration</topic><topic>Uncertainty</topic><topic>Uncertainty parameter</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Su, Changqi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jun</au><au>Su, Changqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-05-15</date><risdate>2021</risdate><volume>223</volume><spage>120043</spage><pages>120043-</pages><artnum>120043</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The uncertainty of renewable distributed energy (photovoltaic, wind power, etc.) and load demand in the microgrid poses challenges to the economy and safety of microgrid operation. This paper proposes a robust optimization model of microgrid considering uncertainty to take into account the economy and robustness of microgrid operation. A two-stage robust optimization model is established to find a balance between the economy and robustness of microgrid operation. Through the optimization procedure, the robust adjustment parameters for microgrid operation can be obtained. The optimized can effectively balance the economy and robustness. The Benders dual algorithm is used to solve the established two-stage robust optimization model. The CPLEX solver is used to simulate the IEEE39-bus system to verify the feasibility and effectiveness of the method. The simulation results show that the robustness of the system can be achieved by solving the robust adjustment parameters, meanwhile the operating cost can be reduced as much as possible no matter in the buying electricity scenario or in the selling electricity scenario. •A two-stage robust optimization model considering uncertainties is established.•Uncertainty parameters are converted corresponding definite adjustable parameters.•The Benders dual algorithm is used to solve the problem.•The robust adjustment parameters of the microgrid can be obtained.•Achieve the purpose of ensuring both economy and robustness better.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120043</doi><orcidid>https://orcid.org/0000-0003-0599-1416</orcidid><orcidid>https://orcid.org/0000-0002-0869-0275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2021-05, Vol.223, p.120043, Article 120043
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2522848504
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Benders dual algorithm
Bending machines
Distributed generation
Economics
Electric power distribution
Electrical loads
Electricity
Mathematical models
Microgrid
Operating costs
Optimization
Parameter robustness
Photovoltaics
Robust equivalent
Robust optimization
Robustness
Stress concentration
Uncertainty
Uncertainty parameter
Wind power
title Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20optimization%20of%20microgrid%20based%20on%20renewable%20distributed%20power%20generation%20and%20load%20demand%20uncertainty&rft.jtitle=Energy%20(Oxford)&rft.au=Yang,%20Jun&rft.date=2021-05-15&rft.volume=223&rft.spage=120043&rft.pages=120043-&rft.artnum=120043&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120043&rft_dat=%3Cproquest_cross%3E2522848504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522848504&rft_id=info:pmid/&rft_els_id=S0360544221002929&rfr_iscdi=true