Can energy security predict energy stock returns?

We hypothesize that energy security contains valuable information that can predict energy stock returns. To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns. We find that, at most, all 10 energy security indexes can predict returns. We further show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy economics 2021-02, Vol.94, p.105052, Article 105052
Hauptverfasser: Iyke, Bernard Njindan, Tran, Vuong Thao, Narayan, Paresh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105052
container_title Energy economics
container_volume 94
creator Iyke, Bernard Njindan
Tran, Vuong Thao
Narayan, Paresh Kumar
description We hypothesize that energy security contains valuable information that can predict energy stock returns. To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns. We find that, at most, all 10 energy security indexes can predict returns. We further show that the return forecasts generated using the energy security indexes as a predictor are economically significant. A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees to access the additional information contained in return forecasts generated using the energy security indexes. These findings survive several robustness tests. •We hypothesize that energy security can predict energy stock returns.•To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns.•We find that, at most, all 10 energy security indexes can predict returns.•We show that our return forecasts are economically significant.•A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees for our forecast information.
doi_str_mv 10.1016/j.eneco.2020.105052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522847063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988320303923</els_id><sourcerecordid>2522847063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-4f3d4f3116eb7c2f86c76af38f0b3bfedb8f3ebfe7ed3ce010925b9043d9375f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoLvBQ8d51kmjQ9iMjiFyx40XNo04m0aluTrLD_3qwVjx6GGR7vzcx7jJ1zWHHg6rJf0UB2XAkQe0SCFAdswXWJueKaH7IF8ALySms8Zich9AAgldQLxtf1kCWxf91lgezWd3GXTZ7azsY_PI72LfMUt34I16fsyNXvgc5--5K93N0-rx_yzdP94_pmk1usVMwLh20qzhU1pRVOK1uq2qF20GDjqG20Q0pDSS1aAg6VkE0FBbYVltLhkl3Meyc_fm4pRNOP6YF00ggphC5KUJhYOLOsH0Pw5Mzku4_a7wwHs8_G9OYnG7PPxszZJNXVrKJk4Ksjb4LtaLDJticbTTt2_-q_AQFlbYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522847063</pqid></control><display><type>article</type><title>Can energy security predict energy stock returns?</title><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>Iyke, Bernard Njindan ; Tran, Vuong Thao ; Narayan, Paresh Kumar</creator><creatorcontrib>Iyke, Bernard Njindan ; Tran, Vuong Thao ; Narayan, Paresh Kumar</creatorcontrib><description>We hypothesize that energy security contains valuable information that can predict energy stock returns. To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns. We find that, at most, all 10 energy security indexes can predict returns. We further show that the return forecasts generated using the energy security indexes as a predictor are economically significant. A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees to access the additional information contained in return forecasts generated using the energy security indexes. These findings survive several robustness tests. •We hypothesize that energy security can predict energy stock returns.•To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns.•We find that, at most, all 10 energy security indexes can predict returns.•We show that our return forecasts are economically significant.•A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees for our forecast information.</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2020.105052</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Economic significance ; Energy ; Energy economics ; Energy security ; Energy stocks ; Fees &amp; charges ; Indexes ; Portfolio management ; Predictability ; Return on investment ; Robustness ; Security ; Stock returns ; Stocks ; Willingness to pay</subject><ispartof>Energy economics, 2021-02, Vol.94, p.105052, Article 105052</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-4f3d4f3116eb7c2f86c76af38f0b3bfedb8f3ebfe7ed3ce010925b9043d9375f3</citedby><cites>FETCH-LOGICAL-c396t-4f3d4f3116eb7c2f86c76af38f0b3bfedb8f3ebfe7ed3ce010925b9043d9375f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0140988320303923$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27843,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Iyke, Bernard Njindan</creatorcontrib><creatorcontrib>Tran, Vuong Thao</creatorcontrib><creatorcontrib>Narayan, Paresh Kumar</creatorcontrib><title>Can energy security predict energy stock returns?</title><title>Energy economics</title><description>We hypothesize that energy security contains valuable information that can predict energy stock returns. To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns. We find that, at most, all 10 energy security indexes can predict returns. We further show that the return forecasts generated using the energy security indexes as a predictor are economically significant. A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees to access the additional information contained in return forecasts generated using the energy security indexes. These findings survive several robustness tests. •We hypothesize that energy security can predict energy stock returns.•To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns.•We find that, at most, all 10 energy security indexes can predict returns.•We show that our return forecasts are economically significant.•A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees for our forecast information.</description><subject>Economic significance</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy security</subject><subject>Energy stocks</subject><subject>Fees &amp; charges</subject><subject>Indexes</subject><subject>Portfolio management</subject><subject>Predictability</subject><subject>Return on investment</subject><subject>Robustness</subject><subject>Security</subject><subject>Stock returns</subject><subject>Stocks</subject><subject>Willingness to pay</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UE1LxDAQDaLguvoLvBQ8d51kmjQ9iMjiFyx40XNo04m0aluTrLD_3qwVjx6GGR7vzcx7jJ1zWHHg6rJf0UB2XAkQe0SCFAdswXWJueKaH7IF8ALySms8Zich9AAgldQLxtf1kCWxf91lgezWd3GXTZ7azsY_PI72LfMUt34I16fsyNXvgc5--5K93N0-rx_yzdP94_pmk1usVMwLh20qzhU1pRVOK1uq2qF20GDjqG20Q0pDSS1aAg6VkE0FBbYVltLhkl3Meyc_fm4pRNOP6YF00ggphC5KUJhYOLOsH0Pw5Mzku4_a7wwHs8_G9OYnG7PPxszZJNXVrKJk4Ksjb4LtaLDJticbTTt2_-q_AQFlbYs</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Iyke, Bernard Njindan</creator><creator>Tran, Vuong Thao</creator><creator>Narayan, Paresh Kumar</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20210201</creationdate><title>Can energy security predict energy stock returns?</title><author>Iyke, Bernard Njindan ; Tran, Vuong Thao ; Narayan, Paresh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-4f3d4f3116eb7c2f86c76af38f0b3bfedb8f3ebfe7ed3ce010925b9043d9375f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Economic significance</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy security</topic><topic>Energy stocks</topic><topic>Fees &amp; charges</topic><topic>Indexes</topic><topic>Portfolio management</topic><topic>Predictability</topic><topic>Return on investment</topic><topic>Robustness</topic><topic>Security</topic><topic>Stock returns</topic><topic>Stocks</topic><topic>Willingness to pay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyke, Bernard Njindan</creatorcontrib><creatorcontrib>Tran, Vuong Thao</creatorcontrib><creatorcontrib>Narayan, Paresh Kumar</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyke, Bernard Njindan</au><au>Tran, Vuong Thao</au><au>Narayan, Paresh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can energy security predict energy stock returns?</atitle><jtitle>Energy economics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>94</volume><spage>105052</spage><pages>105052-</pages><artnum>105052</artnum><issn>0140-9883</issn><eissn>1873-6181</eissn><abstract>We hypothesize that energy security contains valuable information that can predict energy stock returns. To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns. We find that, at most, all 10 energy security indexes can predict returns. We further show that the return forecasts generated using the energy security indexes as a predictor are economically significant. A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees to access the additional information contained in return forecasts generated using the energy security indexes. These findings survive several robustness tests. •We hypothesize that energy security can predict energy stock returns.•To test this hypothesis, we construct 10 energy security indexes and nine energy stock returns.•We find that, at most, all 10 energy security indexes can predict returns.•We show that our return forecasts are economically significant.•A mean-variance investor is willing to pay a maximum of 4.88% per annum in extra portfolio management fees for our forecast information.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2020.105052</doi></addata></record>
fulltext fulltext
identifier ISSN: 0140-9883
ispartof Energy economics, 2021-02, Vol.94, p.105052, Article 105052
issn 0140-9883
1873-6181
language eng
recordid cdi_proquest_journals_2522847063
source PAIS Index; Elsevier ScienceDirect Journals
subjects Economic significance
Energy
Energy economics
Energy security
Energy stocks
Fees & charges
Indexes
Portfolio management
Predictability
Return on investment
Robustness
Security
Stock returns
Stocks
Willingness to pay
title Can energy security predict energy stock returns?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20energy%20security%20predict%20energy%20stock%20returns?&rft.jtitle=Energy%20economics&rft.au=Iyke,%20Bernard%20Njindan&rft.date=2021-02-01&rft.volume=94&rft.spage=105052&rft.pages=105052-&rft.artnum=105052&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2020.105052&rft_dat=%3Cproquest_cross%3E2522847063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522847063&rft_id=info:pmid/&rft_els_id=S0140988320303923&rfr_iscdi=true