Trivial-source endotrivial modules for sporadic groups
We determine the group of endotrivial modules (as an abstract group) for G a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether ce...
Gespeichert in:
Veröffentlicht in: | Beiträge zur Algebra und Geometrie 2021-06, Vol.62 (2), p.317-343 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 2 |
container_start_page | 317 |
container_title | Beiträge zur Algebra und Geometrie |
container_volume | 62 |
creator | Craven, David A. |
description | We determine the group of endotrivial modules (as an abstract group) for
G
a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal. |
doi_str_mv | 10.1007/s13366-020-00521-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522682506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522682506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hk8n2UolYoeOk9ZHeTsmXbrElX8N-7uoI3TwPD-7wzPITcMrhnAPqhMM6VooBAASQyas7IApllFLjh52QBjBsqDLJLclXKHgCU1npB1DZ3H53vaUljbkIVjm06zavqkNqxD6WKKVdlSNm3XVPtchqHck0uou9LuPmdS7J9ftqu1nTz9vK6etzQhjN7ogFbpVELzrSUGgNYUcsgGyUiRKu4NVZ7IcGDr2UUWmgjrY4K21qFBviS3M21Q07vYygnt5_ePE4XHUpEZVCCmlI4p5qcSskhuiF3B58_HQP3rcfNetykx_3ocWaC-AyVKXzchfxX_Q_1BV-fZpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522682506</pqid></control><display><type>article</type><title>Trivial-source endotrivial modules for sporadic groups</title><source>SpringerNature Journals</source><creator>Craven, David A.</creator><creatorcontrib>Craven, David A.</creatorcontrib><description>We determine the group of endotrivial modules (as an abstract group) for
G
a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-020-00521-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Convex and Discrete Geometry ; Geometry ; Mathematics ; Mathematics and Statistics ; Modules ; Original Paper ; Subgroups</subject><ispartof>Beiträge zur Algebra und Geometrie, 2021-06, Vol.62 (2), p.317-343</ispartof><rights>The Managing Editors 2020</rights><rights>The Managing Editors 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</citedby><cites>FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-020-00521-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-020-00521-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Craven, David A.</creatorcontrib><title>Trivial-source endotrivial modules for sporadic groups</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>We determine the group of endotrivial modules (as an abstract group) for
G
a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Original Paper</subject><subject>Subgroups</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hk8n2UolYoeOk9ZHeTsmXbrElX8N-7uoI3TwPD-7wzPITcMrhnAPqhMM6VooBAASQyas7IApllFLjh52QBjBsqDLJLclXKHgCU1npB1DZ3H53vaUljbkIVjm06zavqkNqxD6WKKVdlSNm3XVPtchqHck0uou9LuPmdS7J9ftqu1nTz9vK6etzQhjN7ogFbpVELzrSUGgNYUcsgGyUiRKu4NVZ7IcGDr2UUWmgjrY4K21qFBviS3M21Q07vYygnt5_ePE4XHUpEZVCCmlI4p5qcSskhuiF3B58_HQP3rcfNetykx_3ocWaC-AyVKXzchfxX_Q_1BV-fZpE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Craven, David A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Trivial-source endotrivial modules for sporadic groups</title><author>Craven, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Original Paper</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craven, David A.</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craven, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trivial-source endotrivial modules for sporadic groups</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>62</volume><issue>2</issue><spage>317</spage><epage>343</epage><pages>317-343</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>We determine the group of endotrivial modules (as an abstract group) for
G
a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-020-00521-8</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-4821 |
ispartof | Beiträge zur Algebra und Geometrie, 2021-06, Vol.62 (2), p.317-343 |
issn | 0138-4821 2191-0383 |
language | eng |
recordid | cdi_proquest_journals_2522682506 |
source | SpringerNature Journals |
subjects | Algebra Algebraic Geometry Convex and Discrete Geometry Geometry Mathematics Mathematics and Statistics Modules Original Paper Subgroups |
title | Trivial-source endotrivial modules for sporadic groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trivial-source%20endotrivial%20modules%20for%20sporadic%20groups&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Craven,%20David%20A.&rft.date=2021-06-01&rft.volume=62&rft.issue=2&rft.spage=317&rft.epage=343&rft.pages=317-343&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-020-00521-8&rft_dat=%3Cproquest_cross%3E2522682506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522682506&rft_id=info:pmid/&rfr_iscdi=true |