Trivial-source endotrivial modules for sporadic groups

We determine the group of endotrivial modules (as an abstract group) for G a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beiträge zur Algebra und Geometrie 2021-06, Vol.62 (2), p.317-343
1. Verfasser: Craven, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 2
container_start_page 317
container_title Beiträge zur Algebra und Geometrie
container_volume 62
creator Craven, David A.
description We determine the group of endotrivial modules (as an abstract group) for G a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal.
doi_str_mv 10.1007/s13366-020-00521-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522682506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522682506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hk8n2UolYoeOk9ZHeTsmXbrElX8N-7uoI3TwPD-7wzPITcMrhnAPqhMM6VooBAASQyas7IApllFLjh52QBjBsqDLJLclXKHgCU1npB1DZ3H53vaUljbkIVjm06zavqkNqxD6WKKVdlSNm3XVPtchqHck0uou9LuPmdS7J9ftqu1nTz9vK6etzQhjN7ogFbpVELzrSUGgNYUcsgGyUiRKu4NVZ7IcGDr2UUWmgjrY4K21qFBviS3M21Q07vYygnt5_ePE4XHUpEZVCCmlI4p5qcSskhuiF3B58_HQP3rcfNetykx_3ocWaC-AyVKXzchfxX_Q_1BV-fZpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522682506</pqid></control><display><type>article</type><title>Trivial-source endotrivial modules for sporadic groups</title><source>SpringerNature Journals</source><creator>Craven, David A.</creator><creatorcontrib>Craven, David A.</creatorcontrib><description>We determine the group of endotrivial modules (as an abstract group) for G a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-020-00521-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Convex and Discrete Geometry ; Geometry ; Mathematics ; Mathematics and Statistics ; Modules ; Original Paper ; Subgroups</subject><ispartof>Beiträge zur Algebra und Geometrie, 2021-06, Vol.62 (2), p.317-343</ispartof><rights>The Managing Editors 2020</rights><rights>The Managing Editors 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</citedby><cites>FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-020-00521-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-020-00521-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Craven, David A.</creatorcontrib><title>Trivial-source endotrivial modules for sporadic groups</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>We determine the group of endotrivial modules (as an abstract group) for G a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Original Paper</subject><subject>Subgroups</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hk8n2UolYoeOk9ZHeTsmXbrElX8N-7uoI3TwPD-7wzPITcMrhnAPqhMM6VooBAASQyas7IApllFLjh52QBjBsqDLJLclXKHgCU1npB1DZ3H53vaUljbkIVjm06zavqkNqxD6WKKVdlSNm3XVPtchqHck0uou9LuPmdS7J9ftqu1nTz9vK6etzQhjN7ogFbpVELzrSUGgNYUcsgGyUiRKu4NVZ7IcGDr2UUWmgjrY4K21qFBviS3M21Q07vYygnt5_ePE4XHUpEZVCCmlI4p5qcSskhuiF3B58_HQP3rcfNetykx_3ocWaC-AyVKXzchfxX_Q_1BV-fZpE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Craven, David A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Trivial-source endotrivial modules for sporadic groups</title><author>Craven, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2d672743175572e094b5e5c64f0f9639897a450a0ab5f47478597f62db6ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Original Paper</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craven, David A.</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craven, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trivial-source endotrivial modules for sporadic groups</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>62</volume><issue>2</issue><spage>317</spage><epage>343</epage><pages>317-343</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>We determine the group of endotrivial modules (as an abstract group) for G a (quasi)simple group of sporadic type, extending previous results in the literature. In many sporadic cases we directly construct the subgroup of trivial-source endotrivial modules. We also resolve the question of whether certain simple modules for sporadic groups are endotrivial, posed by Lassueur, Malle and Schulte, in the majority of open cases. The results rely heavily on a recent description of the group of trivial-source endotrivial modules due to Grodal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-020-00521-8</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0138-4821
ispartof Beiträge zur Algebra und Geometrie, 2021-06, Vol.62 (2), p.317-343
issn 0138-4821
2191-0383
language eng
recordid cdi_proquest_journals_2522682506
source SpringerNature Journals
subjects Algebra
Algebraic Geometry
Convex and Discrete Geometry
Geometry
Mathematics
Mathematics and Statistics
Modules
Original Paper
Subgroups
title Trivial-source endotrivial modules for sporadic groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trivial-source%20endotrivial%20modules%20for%20sporadic%20groups&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Craven,%20David%20A.&rft.date=2021-06-01&rft.volume=62&rft.issue=2&rft.spage=317&rft.epage=343&rft.pages=317-343&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-020-00521-8&rft_dat=%3Cproquest_cross%3E2522682506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522682506&rft_id=info:pmid/&rfr_iscdi=true