On Exact Solutions of a Class of Singular Partial Integro-Differential Equations

In this work for a class of second order model and non-model partial integro-differential equations with singularity in the kernel by the aid of arbitrary functions obtained integral representation for solution manifold. In this given article it is entered a new class of functions that at point (a,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2021-03, Vol.42 (3), p.676-684
Hauptverfasser: Yuldashev, T. K., Odinaev, R. N., Zarifzoda, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 3
container_start_page 676
container_title Lobachevskii journal of mathematics
container_volume 42
creator Yuldashev, T. K.
Odinaev, R. N.
Zarifzoda, S. K.
description In this work for a class of second order model and non-model partial integro-differential equations with singularity in the kernel by the aid of arbitrary functions obtained integral representation for solution manifold. In this given article it is entered a new class of functions that at point (a, b) is converted to zero with some asymptotic behavior and the solution of given equation is found in considering class. Also, singular integro-differential operators are entered and main properties of these operators are learned. Also inverse operators for these operators are found. It is shown that the solution of studying equation is equivalent to the solution of system of two ordinary integro-differential equations of variables x and y . In the cases, when the solution of given integro-differential equation depends of any arbitrary constant Cauchy type problems are investigated. In order to study Cauchy type problems the properties of their solutions are studied. It is shown that, when some conditions are fulfilled the each of Cauchy type problems has only unique solution.
doi_str_mv 10.1134/S1995080221030240
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522681327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522681327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-edba384a1656b5978cc1579107a3c365c556fcdac87c3d2306fbd87d034521da3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq5lkk80epVYtFFqonpdpNilb1k2b7IL-e9NW8CCe5jHvY5hHyC2wewCRP6ygLCXTjHNggvGcnZERaNBZWSp-nnCiswN_Sa5i3LIkVEqNyHLR0eknmp6ufDv0je8i9Y4inbQYj3DVdJuhxUCXGPoGWzrrersJPntqnLPBdsfldD_g0X1NLhy20d78zDF5f56-TV6z-eJlNnmcZ0aA6jNbr1HoHEFJtZZloY0BWZTAChRGKGmkVM7UaHRhRM0FU25d66JmIpccahRjcnfK3QW_H2zsq60fQpdOVlym5zQIXiQVnFQm-BiDddUuNB8Yvipg1aG46k9xycNPnpi03caG3-T_Td_fcW5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522681327</pqid></control><display><type>article</type><title>On Exact Solutions of a Class of Singular Partial Integro-Differential Equations</title><source>SpringerLink Journals</source><creator>Yuldashev, T. K. ; Odinaev, R. N. ; Zarifzoda, S. K.</creator><creatorcontrib>Yuldashev, T. K. ; Odinaev, R. N. ; Zarifzoda, S. K.</creatorcontrib><description>In this work for a class of second order model and non-model partial integro-differential equations with singularity in the kernel by the aid of arbitrary functions obtained integral representation for solution manifold. In this given article it is entered a new class of functions that at point (a, b) is converted to zero with some asymptotic behavior and the solution of given equation is found in considering class. Also, singular integro-differential operators are entered and main properties of these operators are learned. Also inverse operators for these operators are found. It is shown that the solution of studying equation is equivalent to the solution of system of two ordinary integro-differential equations of variables x and y . In the cases, when the solution of given integro-differential equation depends of any arbitrary constant Cauchy type problems are investigated. In order to study Cauchy type problems the properties of their solutions are studied. It is shown that, when some conditions are fulfilled the each of Cauchy type problems has only unique solution.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080221030240</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic properties ; Differential equations ; Exact solutions ; Geometry ; Mathematical Logic and Foundations ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Probability Theory and Stochastic Processes ; Singularity (mathematics)</subject><ispartof>Lobachevskii journal of mathematics, 2021-03, Vol.42 (3), p.676-684</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-edba384a1656b5978cc1579107a3c365c556fcdac87c3d2306fbd87d034521da3</citedby><cites>FETCH-LOGICAL-c316t-edba384a1656b5978cc1579107a3c365c556fcdac87c3d2306fbd87d034521da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080221030240$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080221030240$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yuldashev, T. K.</creatorcontrib><creatorcontrib>Odinaev, R. N.</creatorcontrib><creatorcontrib>Zarifzoda, S. K.</creatorcontrib><title>On Exact Solutions of a Class of Singular Partial Integro-Differential Equations</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this work for a class of second order model and non-model partial integro-differential equations with singularity in the kernel by the aid of arbitrary functions obtained integral representation for solution manifold. In this given article it is entered a new class of functions that at point (a, b) is converted to zero with some asymptotic behavior and the solution of given equation is found in considering class. Also, singular integro-differential operators are entered and main properties of these operators are learned. Also inverse operators for these operators are found. It is shown that the solution of studying equation is equivalent to the solution of system of two ordinary integro-differential equations of variables x and y . In the cases, when the solution of given integro-differential equation depends of any arbitrary constant Cauchy type problems are investigated. In order to study Cauchy type problems the properties of their solutions are studied. It is shown that, when some conditions are fulfilled the each of Cauchy type problems has only unique solution.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Singularity (mathematics)</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq5lkk80epVYtFFqonpdpNilb1k2b7IL-e9NW8CCe5jHvY5hHyC2wewCRP6ygLCXTjHNggvGcnZERaNBZWSp-nnCiswN_Sa5i3LIkVEqNyHLR0eknmp6ufDv0je8i9Y4inbQYj3DVdJuhxUCXGPoGWzrrersJPntqnLPBdsfldD_g0X1NLhy20d78zDF5f56-TV6z-eJlNnmcZ0aA6jNbr1HoHEFJtZZloY0BWZTAChRGKGmkVM7UaHRhRM0FU25d66JmIpccahRjcnfK3QW_H2zsq60fQpdOVlym5zQIXiQVnFQm-BiDddUuNB8Yvipg1aG46k9xycNPnpi03caG3-T_Td_fcW5Y</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yuldashev, T. K.</creator><creator>Odinaev, R. N.</creator><creator>Zarifzoda, S. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>On Exact Solutions of a Class of Singular Partial Integro-Differential Equations</title><author>Yuldashev, T. K. ; Odinaev, R. N. ; Zarifzoda, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-edba384a1656b5978cc1579107a3c365c556fcdac87c3d2306fbd87d034521da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuldashev, T. K.</creatorcontrib><creatorcontrib>Odinaev, R. N.</creatorcontrib><creatorcontrib>Zarifzoda, S. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuldashev, T. K.</au><au>Odinaev, R. N.</au><au>Zarifzoda, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exact Solutions of a Class of Singular Partial Integro-Differential Equations</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>42</volume><issue>3</issue><spage>676</spage><epage>684</epage><pages>676-684</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this work for a class of second order model and non-model partial integro-differential equations with singularity in the kernel by the aid of arbitrary functions obtained integral representation for solution manifold. In this given article it is entered a new class of functions that at point (a, b) is converted to zero with some asymptotic behavior and the solution of given equation is found in considering class. Also, singular integro-differential operators are entered and main properties of these operators are learned. Also inverse operators for these operators are found. It is shown that the solution of studying equation is equivalent to the solution of system of two ordinary integro-differential equations of variables x and y . In the cases, when the solution of given integro-differential equation depends of any arbitrary constant Cauchy type problems are investigated. In order to study Cauchy type problems the properties of their solutions are studied. It is shown that, when some conditions are fulfilled the each of Cauchy type problems has only unique solution.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080221030240</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2021-03, Vol.42 (3), p.676-684
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2522681327
source SpringerLink Journals
subjects Algebra
Analysis
Asymptotic properties
Differential equations
Exact solutions
Geometry
Mathematical Logic and Foundations
Mathematical models
Mathematics
Mathematics and Statistics
Operators (mathematics)
Probability Theory and Stochastic Processes
Singularity (mathematics)
title On Exact Solutions of a Class of Singular Partial Integro-Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exact%20Solutions%20of%20a%20Class%20of%20Singular%20Partial%20Integro-Differential%20Equations&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Yuldashev,%20T.%20K.&rft.date=2021-03-01&rft.volume=42&rft.issue=3&rft.spage=676&rft.epage=684&rft.pages=676-684&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080221030240&rft_dat=%3Cproquest_cross%3E2522681327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522681327&rft_id=info:pmid/&rfr_iscdi=true