On the global convergence of a new spectral residual algorithm for nonlinear systems of equations
We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under...
Gespeichert in:
Veröffentlicht in: | Bollettino della Unione matematica italiana (2008) 2021-06, Vol.14 (2), p.367-378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 2 |
container_start_page | 367 |
container_title | Bollettino della Unione matematica italiana (2008) |
container_volume | 14 |
creator | Papini, Alessandra Porcelli, Margherita Sgattoni, Cristina |
description | We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments. |
doi_str_mv | 10.1007/s40574-020-00270-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522681291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522681291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59Vk9iPJUYpfUOhFzyGbnd1u2SZtslX6701dwZunGWbeZ17mJeSWs3vOmHiIBStFkTFgGWMgWFZekBlwJTMQpbokM64EZJWA4posYtwyxjjPpVBiRsza0XGDtBt8bQZqvfvE0KGzSH1LDXX4ReMe7RjSNmDsm2NqzND50I-bHW19oM67oXdoAo2nOOIunlE8HM3YexdvyFVrhoiL3zonH89P78vXbLV-eVs-rjKbV_mYFcillAhMWVDMWEDVyMqmgREl1iJ9l1dCFKIurULZ2MoqBU0NYHhVK5nPyd10dx_84Yhx1Ft_DC5ZaigBKslB8aSCSWWDjzFgq_eh35lw0pzpc5p6SlMnP_2Tpi4TlE9QTGLXYfg7_Q_1DUwyd9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522681291</pqid></control><display><type>article</type><title>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Papini, Alessandra ; Porcelli, Margherita ; Sgattoni, Cristina</creator><creatorcontrib>Papini, Alessandra ; Porcelli, Margherita ; Sgattoni, Cristina</creatorcontrib><description>We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.</description><identifier>ISSN: 1972-6724</identifier><identifier>EISSN: 2198-2759</identifier><identifier>DOI: 10.1007/s40574-020-00270-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Convergence ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinear systems ; Robustness (mathematics)</subject><ispartof>Bollettino della Unione matematica italiana (2008), 2021-06, Vol.14 (2), p.367-378</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</citedby><cites>FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</cites><orcidid>0000-0003-0183-1204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40574-020-00270-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40574-020-00270-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Papini, Alessandra</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><creatorcontrib>Sgattoni, Cristina</creatorcontrib><title>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</title><title>Bollettino della Unione matematica italiana (2008)</title><addtitle>Boll Unione Mat Ital</addtitle><description>We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Robustness (mathematics)</subject><issn>1972-6724</issn><issn>2198-2759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59Vk9iPJUYpfUOhFzyGbnd1u2SZtslX6701dwZunGWbeZ17mJeSWs3vOmHiIBStFkTFgGWMgWFZekBlwJTMQpbokM64EZJWA4posYtwyxjjPpVBiRsza0XGDtBt8bQZqvfvE0KGzSH1LDXX4ReMe7RjSNmDsm2NqzND50I-bHW19oM67oXdoAo2nOOIunlE8HM3YexdvyFVrhoiL3zonH89P78vXbLV-eVs-rjKbV_mYFcillAhMWVDMWEDVyMqmgREl1iJ9l1dCFKIurULZ2MoqBU0NYHhVK5nPyd10dx_84Yhx1Ft_DC5ZaigBKslB8aSCSWWDjzFgq_eh35lw0pzpc5p6SlMnP_2Tpi4TlE9QTGLXYfg7_Q_1DUwyd9g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Papini, Alessandra</creator><creator>Porcelli, Margherita</creator><creator>Sgattoni, Cristina</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid></search><sort><creationdate>20210601</creationdate><title>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</title><author>Papini, Alessandra ; Porcelli, Margherita ; Sgattoni, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Papini, Alessandra</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><creatorcontrib>Sgattoni, Cristina</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Bollettino della Unione matematica italiana (2008)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papini, Alessandra</au><au>Porcelli, Margherita</au><au>Sgattoni, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</atitle><jtitle>Bollettino della Unione matematica italiana (2008)</jtitle><stitle>Boll Unione Mat Ital</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>367</spage><epage>378</epage><pages>367-378</pages><issn>1972-6724</issn><eissn>2198-2759</eissn><abstract>We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40574-020-00270-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1972-6724 |
ispartof | Bollettino della Unione matematica italiana (2008), 2021-06, Vol.14 (2), p.367-378 |
issn | 1972-6724 2198-2759 |
language | eng |
recordid | cdi_proquest_journals_2522681291 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Convergence Mathematical analysis Mathematics Mathematics and Statistics Nonlinear equations Nonlinear systems Robustness (mathematics) |
title | On the global convergence of a new spectral residual algorithm for nonlinear systems of equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20global%20convergence%20of%20a%20new%20spectral%20residual%20algorithm%20for%20nonlinear%20systems%20of%20equations&rft.jtitle=Bollettino%20della%20Unione%20matematica%20italiana%20(2008)&rft.au=Papini,%20Alessandra&rft.date=2021-06-01&rft.volume=14&rft.issue=2&rft.spage=367&rft.epage=378&rft.pages=367-378&rft.issn=1972-6724&rft.eissn=2198-2759&rft_id=info:doi/10.1007/s40574-020-00270-5&rft_dat=%3Cproquest_cross%3E2522681291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522681291&rft_id=info:pmid/&rfr_iscdi=true |