On the global convergence of a new spectral residual algorithm for nonlinear systems of equations

We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bollettino della Unione matematica italiana (2008) 2021-06, Vol.14 (2), p.367-378
Hauptverfasser: Papini, Alessandra, Porcelli, Margherita, Sgattoni, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 2
container_start_page 367
container_title Bollettino della Unione matematica italiana (2008)
container_volume 14
creator Papini, Alessandra
Porcelli, Margherita
Sgattoni, Cristina
description We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.
doi_str_mv 10.1007/s40574-020-00270-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522681291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522681291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59Vk9iPJUYpfUOhFzyGbnd1u2SZtslX6701dwZunGWbeZ17mJeSWs3vOmHiIBStFkTFgGWMgWFZekBlwJTMQpbokM64EZJWA4posYtwyxjjPpVBiRsza0XGDtBt8bQZqvfvE0KGzSH1LDXX4ReMe7RjSNmDsm2NqzND50I-bHW19oM67oXdoAo2nOOIunlE8HM3YexdvyFVrhoiL3zonH89P78vXbLV-eVs-rjKbV_mYFcillAhMWVDMWEDVyMqmgREl1iJ9l1dCFKIurULZ2MoqBU0NYHhVK5nPyd10dx_84Yhx1Ft_DC5ZaigBKslB8aSCSWWDjzFgq_eh35lw0pzpc5p6SlMnP_2Tpi4TlE9QTGLXYfg7_Q_1DUwyd9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522681291</pqid></control><display><type>article</type><title>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Papini, Alessandra ; Porcelli, Margherita ; Sgattoni, Cristina</creator><creatorcontrib>Papini, Alessandra ; Porcelli, Margherita ; Sgattoni, Cristina</creatorcontrib><description>We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.</description><identifier>ISSN: 1972-6724</identifier><identifier>EISSN: 2198-2759</identifier><identifier>DOI: 10.1007/s40574-020-00270-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Convergence ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinear systems ; Robustness (mathematics)</subject><ispartof>Bollettino della Unione matematica italiana (2008), 2021-06, Vol.14 (2), p.367-378</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</citedby><cites>FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</cites><orcidid>0000-0003-0183-1204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40574-020-00270-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40574-020-00270-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Papini, Alessandra</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><creatorcontrib>Sgattoni, Cristina</creatorcontrib><title>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</title><title>Bollettino della Unione matematica italiana (2008)</title><addtitle>Boll Unione Mat Ital</addtitle><description>We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Robustness (mathematics)</subject><issn>1972-6724</issn><issn>2198-2759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59Vk9iPJUYpfUOhFzyGbnd1u2SZtslX6701dwZunGWbeZ17mJeSWs3vOmHiIBStFkTFgGWMgWFZekBlwJTMQpbokM64EZJWA4posYtwyxjjPpVBiRsza0XGDtBt8bQZqvfvE0KGzSH1LDXX4ReMe7RjSNmDsm2NqzND50I-bHW19oM67oXdoAo2nOOIunlE8HM3YexdvyFVrhoiL3zonH89P78vXbLV-eVs-rjKbV_mYFcillAhMWVDMWEDVyMqmgREl1iJ9l1dCFKIurULZ2MoqBU0NYHhVK5nPyd10dx_84Yhx1Ft_DC5ZaigBKslB8aSCSWWDjzFgq_eh35lw0pzpc5p6SlMnP_2Tpi4TlE9QTGLXYfg7_Q_1DUwyd9g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Papini, Alessandra</creator><creator>Porcelli, Margherita</creator><creator>Sgattoni, Cristina</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid></search><sort><creationdate>20210601</creationdate><title>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</title><author>Papini, Alessandra ; Porcelli, Margherita ; Sgattoni, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4e1888e209c290ac2e9d86ce20a75eb7020367747b5c9e8dc6c992db22a16b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Papini, Alessandra</creatorcontrib><creatorcontrib>Porcelli, Margherita</creatorcontrib><creatorcontrib>Sgattoni, Cristina</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Bollettino della Unione matematica italiana (2008)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papini, Alessandra</au><au>Porcelli, Margherita</au><au>Sgattoni, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the global convergence of a new spectral residual algorithm for nonlinear systems of equations</atitle><jtitle>Bollettino della Unione matematica italiana (2008)</jtitle><stitle>Boll Unione Mat Ital</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>367</spage><epage>378</epage><pages>367-378</pages><issn>1972-6724</issn><eissn>2198-2759</eissn><abstract>We present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40574-020-00270-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0183-1204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1972-6724
ispartof Bollettino della Unione matematica italiana (2008), 2021-06, Vol.14 (2), p.367-378
issn 1972-6724
2198-2759
language eng
recordid cdi_proquest_journals_2522681291
source Springer Nature - Complete Springer Journals
subjects Algorithms
Convergence
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinear systems
Robustness (mathematics)
title On the global convergence of a new spectral residual algorithm for nonlinear systems of equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20global%20convergence%20of%20a%20new%20spectral%20residual%20algorithm%20for%20nonlinear%20systems%20of%20equations&rft.jtitle=Bollettino%20della%20Unione%20matematica%20italiana%20(2008)&rft.au=Papini,%20Alessandra&rft.date=2021-06-01&rft.volume=14&rft.issue=2&rft.spage=367&rft.epage=378&rft.pages=367-378&rft.issn=1972-6724&rft.eissn=2198-2759&rft_id=info:doi/10.1007/s40574-020-00270-5&rft_dat=%3Cproquest_cross%3E2522681291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522681291&rft_id=info:pmid/&rfr_iscdi=true