Analysis and prediction of surface roughness for robotic belt grinding of complex blade considering coexistence of elastic deformation and varying curvature

Precision prediction of machined surface roughness is challenging facing the robotic belt grinding of complex blade, since this process is accompanied by significant elastic deformation. The resulting poor prediction accuracy, to a great extent, is attributed to the existing prediction model which l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2021-05, Vol.64 (5), p.957-970
Hauptverfasser: Xu, XiaoHu, Ye, SongTao, Yang, ZeYuan, Yan, SiJie, Zhu, DaHu, Ding, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 5
container_start_page 957
container_title Science China. Technological sciences
container_volume 64
creator Xu, XiaoHu
Ye, SongTao
Yang, ZeYuan
Yan, SiJie
Zhu, DaHu
Ding, Han
description Precision prediction of machined surface roughness is challenging facing the robotic belt grinding of complex blade, since this process is accompanied by significant elastic deformation. The resulting poor prediction accuracy, to a great extent, is attributed to the existing prediction model which less considers the dynamics. In this paper, an improved scallop height model is developed to predict and assess the machined surface roughness by taking into account the elastic deformation and the varying curvature of blade, then robotic belt grinding experiments are carried out to evaluate the proposed model from the perspective of surface roughness. Finally factors that influence the scallop height are analyzed, and the suitable empirical equation of surface roughness is proposed to assess and predict the surface quality from the aspect of blade concave and convex surface by adopting the constant scallop height machining.
doi_str_mv 10.1007/s11431-020-1712-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522666303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522666303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b5e4f67af7717528f3bd0b6dd0ba916c14f7771de7acb9711ae8cf864afd8f573</originalsourceid><addsrcrecordid>eNp1UU1LxDAQLaLgov4AbwHP1UzbTdqjiF-w4EXPIU0ma6Tb1Ey77P4Xf6ypK3gyh8kM896bYV6WXQK_Bs7lDQFUJeS84DlIKPLqKFtALZocGs6PUy5klcuygNPsguiDp1fWDYdqkX3d9rrbkyeme8uGiNab0YeeBcdoik4bZDFM6_ceiZgLMVVtGL1hLXYjW0ffW9-vZ7gJm6HDHWs7bTFVPXmLcW6agDtPI_ZJLAGx0zQrWEx6G_0zbp6-1XH_A5_iVo9TxPPsxOmO8OL3P8veHu5f757y1cvj893tKjcliDFvl1g5IbWTEuSyqF3ZWt4Km4JuQBioUkeCRalN20gAjbVxtai0s7VbyvIsuzroDjF8Tkij-ghTTIchVSyLQghR8jKh4IAyMRBFdGqIfpN2VsDV7IM6-KCSD2r2QVWJUxw4NMyXwPin_D_pGxGSjyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522666303</pqid></control><display><type>article</type><title>Analysis and prediction of surface roughness for robotic belt grinding of complex blade considering coexistence of elastic deformation and varying curvature</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, XiaoHu ; Ye, SongTao ; Yang, ZeYuan ; Yan, SiJie ; Zhu, DaHu ; Ding, Han</creator><creatorcontrib>Xu, XiaoHu ; Ye, SongTao ; Yang, ZeYuan ; Yan, SiJie ; Zhu, DaHu ; Ding, Han</creatorcontrib><description>Precision prediction of machined surface roughness is challenging facing the robotic belt grinding of complex blade, since this process is accompanied by significant elastic deformation. The resulting poor prediction accuracy, to a great extent, is attributed to the existing prediction model which less considers the dynamics. In this paper, an improved scallop height model is developed to predict and assess the machined surface roughness by taking into account the elastic deformation and the varying curvature of blade, then robotic belt grinding experiments are carried out to evaluate the proposed model from the perspective of surface roughness. Finally factors that influence the scallop height are analyzed, and the suitable empirical equation of surface roughness is proposed to assess and predict the surface quality from the aspect of blade concave and convex surface by adopting the constant scallop height machining.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-020-1712-4</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Belt grinding ; Curvature ; Elastic deformation ; Empirical equations ; Engineering ; Grinding ; Machining ; Prediction models ; Rapid prototyping ; Robotics ; Surface properties ; Surface roughness</subject><ispartof>Science China. Technological sciences, 2021-05, Vol.64 (5), p.957-970</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b5e4f67af7717528f3bd0b6dd0ba916c14f7771de7acb9711ae8cf864afd8f573</citedby><cites>FETCH-LOGICAL-c316t-b5e4f67af7717528f3bd0b6dd0ba916c14f7771de7acb9711ae8cf864afd8f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-020-1712-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-020-1712-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Xu, XiaoHu</creatorcontrib><creatorcontrib>Ye, SongTao</creatorcontrib><creatorcontrib>Yang, ZeYuan</creatorcontrib><creatorcontrib>Yan, SiJie</creatorcontrib><creatorcontrib>Zhu, DaHu</creatorcontrib><creatorcontrib>Ding, Han</creatorcontrib><title>Analysis and prediction of surface roughness for robotic belt grinding of complex blade considering coexistence of elastic deformation and varying curvature</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Precision prediction of machined surface roughness is challenging facing the robotic belt grinding of complex blade, since this process is accompanied by significant elastic deformation. The resulting poor prediction accuracy, to a great extent, is attributed to the existing prediction model which less considers the dynamics. In this paper, an improved scallop height model is developed to predict and assess the machined surface roughness by taking into account the elastic deformation and the varying curvature of blade, then robotic belt grinding experiments are carried out to evaluate the proposed model from the perspective of surface roughness. Finally factors that influence the scallop height are analyzed, and the suitable empirical equation of surface roughness is proposed to assess and predict the surface quality from the aspect of blade concave and convex surface by adopting the constant scallop height machining.</description><subject>Belt grinding</subject><subject>Curvature</subject><subject>Elastic deformation</subject><subject>Empirical equations</subject><subject>Engineering</subject><subject>Grinding</subject><subject>Machining</subject><subject>Prediction models</subject><subject>Rapid prototyping</subject><subject>Robotics</subject><subject>Surface properties</subject><subject>Surface roughness</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UU1LxDAQLaLgov4AbwHP1UzbTdqjiF-w4EXPIU0ma6Tb1Ey77P4Xf6ypK3gyh8kM896bYV6WXQK_Bs7lDQFUJeS84DlIKPLqKFtALZocGs6PUy5klcuygNPsguiDp1fWDYdqkX3d9rrbkyeme8uGiNab0YeeBcdoik4bZDFM6_ceiZgLMVVtGL1hLXYjW0ffW9-vZ7gJm6HDHWs7bTFVPXmLcW6agDtPI_ZJLAGx0zQrWEx6G_0zbp6-1XH_A5_iVo9TxPPsxOmO8OL3P8veHu5f757y1cvj893tKjcliDFvl1g5IbWTEuSyqF3ZWt4Km4JuQBioUkeCRalN20gAjbVxtai0s7VbyvIsuzroDjF8Tkij-ghTTIchVSyLQghR8jKh4IAyMRBFdGqIfpN2VsDV7IM6-KCSD2r2QVWJUxw4NMyXwPin_D_pGxGSjyk</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Xu, XiaoHu</creator><creator>Ye, SongTao</creator><creator>Yang, ZeYuan</creator><creator>Yan, SiJie</creator><creator>Zhu, DaHu</creator><creator>Ding, Han</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Analysis and prediction of surface roughness for robotic belt grinding of complex blade considering coexistence of elastic deformation and varying curvature</title><author>Xu, XiaoHu ; Ye, SongTao ; Yang, ZeYuan ; Yan, SiJie ; Zhu, DaHu ; Ding, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b5e4f67af7717528f3bd0b6dd0ba916c14f7771de7acb9711ae8cf864afd8f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Belt grinding</topic><topic>Curvature</topic><topic>Elastic deformation</topic><topic>Empirical equations</topic><topic>Engineering</topic><topic>Grinding</topic><topic>Machining</topic><topic>Prediction models</topic><topic>Rapid prototyping</topic><topic>Robotics</topic><topic>Surface properties</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, XiaoHu</creatorcontrib><creatorcontrib>Ye, SongTao</creatorcontrib><creatorcontrib>Yang, ZeYuan</creatorcontrib><creatorcontrib>Yan, SiJie</creatorcontrib><creatorcontrib>Zhu, DaHu</creatorcontrib><creatorcontrib>Ding, Han</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, XiaoHu</au><au>Ye, SongTao</au><au>Yang, ZeYuan</au><au>Yan, SiJie</au><au>Zhu, DaHu</au><au>Ding, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and prediction of surface roughness for robotic belt grinding of complex blade considering coexistence of elastic deformation and varying curvature</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>64</volume><issue>5</issue><spage>957</spage><epage>970</epage><pages>957-970</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Precision prediction of machined surface roughness is challenging facing the robotic belt grinding of complex blade, since this process is accompanied by significant elastic deformation. The resulting poor prediction accuracy, to a great extent, is attributed to the existing prediction model which less considers the dynamics. In this paper, an improved scallop height model is developed to predict and assess the machined surface roughness by taking into account the elastic deformation and the varying curvature of blade, then robotic belt grinding experiments are carried out to evaluate the proposed model from the perspective of surface roughness. Finally factors that influence the scallop height are analyzed, and the suitable empirical equation of surface roughness is proposed to assess and predict the surface quality from the aspect of blade concave and convex surface by adopting the constant scallop height machining.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-020-1712-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2021-05, Vol.64 (5), p.957-970
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2522666303
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Belt grinding
Curvature
Elastic deformation
Empirical equations
Engineering
Grinding
Machining
Prediction models
Rapid prototyping
Robotics
Surface properties
Surface roughness
title Analysis and prediction of surface roughness for robotic belt grinding of complex blade considering coexistence of elastic deformation and varying curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20prediction%20of%20surface%20roughness%20for%20robotic%20belt%20grinding%20of%20complex%20blade%20considering%20coexistence%20of%20elastic%20deformation%20and%20varying%20curvature&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Xu,%20XiaoHu&rft.date=2021-05-01&rft.volume=64&rft.issue=5&rft.spage=957&rft.epage=970&rft.pages=957-970&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-020-1712-4&rft_dat=%3Cproquest_cross%3E2522666303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522666303&rft_id=info:pmid/&rfr_iscdi=true