Asymmetrical effects of temperature on stage‐structured predator–prey interactions

Warming can impact consumer–resource interactions through multiple mechanisms. For example, warming can both alter the rate at which predators consume prey and the rate prey develop through vulnerable life stages. Thus, the overall effect of warming on consumer–resource interactions will depend upon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional ecology 2021-05, Vol.35 (5), p.1041-1054
Hauptverfasser: Davidson, Andrew T., Hamman, Elizabeth A., McCoy, Michael W., Vonesh, James R., Marshall, Katie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1054
container_issue 5
container_start_page 1041
container_title Functional ecology
container_volume 35
creator Davidson, Andrew T.
Hamman, Elizabeth A.
McCoy, Michael W.
Vonesh, James R.
Marshall, Katie
description Warming can impact consumer–resource interactions through multiple mechanisms. For example, warming can both alter the rate at which predators consume prey and the rate prey develop through vulnerable life stages. Thus, the overall effect of warming on consumer–resource interactions will depend upon the strength and asymmetry of warming effects on predator and prey performance. Here, we quantified the temperature dependence of both (a) density‐dependent predation rates for two dragonfly nymph predators on a shared mosquito larval prey, via the functional response, and (b) the development rate of mosquito larval prey to a predator‐invulnerable adult stage. We united the results of these two empirical studies using a temperature‐ and density‐dependent stage‐structured predation model to predict the effects of temperature on the number of larvae that survive to adulthood. Warming accelerated both larval mosquito development and increased dragonfly consumption. Model simulations suggest that differences in the magnitude and rate of predator and prey responses to warming determined the change in magnitude of the overall effect of predation on prey survival to adulthood. Specifically, we found that depending on which predator species prey were exposed to in the model, the net effect of warming was either an overall reduction or no change in predation strength across a temperature gradient. Our results highlight a need for better mechanistic understanding of the differential effects of temperature on consumer–resource pairs to accurately predict how warming affects food web dynamics. A free plain language summary can be found within the Supporting Information of this article. A free plain language summary can be found within the Supporting Information of this article.
doi_str_mv 10.1111/1365-2435.13777
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522519120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522519120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3157-3516d64fd950507df4c12f0dd02affefb303bd551c3dea2aa227e04eb419b4c53</originalsourceid><addsrcrecordid>eNqFUMtKw0AUHUTBWl27HXCddp6JWZbSqiC4UbfDZB6S0mTizATJrp8g-If9EidG3HoX914O59zHAeAaowVOscQ05xlhlC8wLYriBMz-kFMwQyQvs1uW03NwEcIOIVRyQmbgdRWGpjHR10ruobHWqBigszCapjNext4b6FoYonwzx8NniL5XI6hhl5KMzh8PX6kdYN3GJFCxdm24BGdW7oO5-q1z8LLdPK_vs8enu4f16jFTFPMioxznOmdWlxxxVGjLFCYWaY2ITKfYiiJaac6xotpIIiUhhUHMVAyXFVOczsHNNLfz7r03IYqd632bVgqS_uO4xAQl1nJiKe9C8MaKzteN9IPASIzmidEqMVolfsxLCj4pPuq9Gf6ji-1mPem-AUMNdJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522519120</pqid></control><display><type>article</type><title>Asymmetrical effects of temperature on stage‐structured predator–prey interactions</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><creator>Davidson, Andrew T. ; Hamman, Elizabeth A. ; McCoy, Michael W. ; Vonesh, James R. ; Marshall, Katie</creator><contributor>Marshall, Katie</contributor><creatorcontrib>Davidson, Andrew T. ; Hamman, Elizabeth A. ; McCoy, Michael W. ; Vonesh, James R. ; Marshall, Katie ; Marshall, Katie</creatorcontrib><description>Warming can impact consumer–resource interactions through multiple mechanisms. For example, warming can both alter the rate at which predators consume prey and the rate prey develop through vulnerable life stages. Thus, the overall effect of warming on consumer–resource interactions will depend upon the strength and asymmetry of warming effects on predator and prey performance. Here, we quantified the temperature dependence of both (a) density‐dependent predation rates for two dragonfly nymph predators on a shared mosquito larval prey, via the functional response, and (b) the development rate of mosquito larval prey to a predator‐invulnerable adult stage. We united the results of these two empirical studies using a temperature‐ and density‐dependent stage‐structured predation model to predict the effects of temperature on the number of larvae that survive to adulthood. Warming accelerated both larval mosquito development and increased dragonfly consumption. Model simulations suggest that differences in the magnitude and rate of predator and prey responses to warming determined the change in magnitude of the overall effect of predation on prey survival to adulthood. Specifically, we found that depending on which predator species prey were exposed to in the model, the net effect of warming was either an overall reduction or no change in predation strength across a temperature gradient. Our results highlight a need for better mechanistic understanding of the differential effects of temperature on consumer–resource pairs to accurately predict how warming affects food web dynamics. A free plain language summary can be found within the Supporting Information of this article. A free plain language summary can be found within the Supporting Information of this article.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.13777</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Asymmetry ; Density ; Food chains ; Food webs ; Larvae ; Mosquitoes ; Predation ; Predator-prey interactions ; Predator-prey simulation ; Predators ; Prey ; stage‐structured predation ; Temperature dependence ; Temperature effects ; Temperature gradients ; theoretical modelling ; thermal performance ; warming</subject><ispartof>Functional ecology, 2021-05, Vol.35 (5), p.1041-1054</ispartof><rights>2021 British Ecological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3157-3516d64fd950507df4c12f0dd02affefb303bd551c3dea2aa227e04eb419b4c53</citedby><cites>FETCH-LOGICAL-c3157-3516d64fd950507df4c12f0dd02affefb303bd551c3dea2aa227e04eb419b4c53</cites><orcidid>0000-0001-6589-4699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2435.13777$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2435.13777$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids></links><search><contributor>Marshall, Katie</contributor><creatorcontrib>Davidson, Andrew T.</creatorcontrib><creatorcontrib>Hamman, Elizabeth A.</creatorcontrib><creatorcontrib>McCoy, Michael W.</creatorcontrib><creatorcontrib>Vonesh, James R.</creatorcontrib><creatorcontrib>Marshall, Katie</creatorcontrib><title>Asymmetrical effects of temperature on stage‐structured predator–prey interactions</title><title>Functional ecology</title><description>Warming can impact consumer–resource interactions through multiple mechanisms. For example, warming can both alter the rate at which predators consume prey and the rate prey develop through vulnerable life stages. Thus, the overall effect of warming on consumer–resource interactions will depend upon the strength and asymmetry of warming effects on predator and prey performance. Here, we quantified the temperature dependence of both (a) density‐dependent predation rates for two dragonfly nymph predators on a shared mosquito larval prey, via the functional response, and (b) the development rate of mosquito larval prey to a predator‐invulnerable adult stage. We united the results of these two empirical studies using a temperature‐ and density‐dependent stage‐structured predation model to predict the effects of temperature on the number of larvae that survive to adulthood. Warming accelerated both larval mosquito development and increased dragonfly consumption. Model simulations suggest that differences in the magnitude and rate of predator and prey responses to warming determined the change in magnitude of the overall effect of predation on prey survival to adulthood. Specifically, we found that depending on which predator species prey were exposed to in the model, the net effect of warming was either an overall reduction or no change in predation strength across a temperature gradient. Our results highlight a need for better mechanistic understanding of the differential effects of temperature on consumer–resource pairs to accurately predict how warming affects food web dynamics. A free plain language summary can be found within the Supporting Information of this article. A free plain language summary can be found within the Supporting Information of this article.</description><subject>Asymmetry</subject><subject>Density</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Larvae</subject><subject>Mosquitoes</subject><subject>Predation</subject><subject>Predator-prey interactions</subject><subject>Predator-prey simulation</subject><subject>Predators</subject><subject>Prey</subject><subject>stage‐structured predation</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>theoretical modelling</subject><subject>thermal performance</subject><subject>warming</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKw0AUHUTBWl27HXCddp6JWZbSqiC4UbfDZB6S0mTizATJrp8g-If9EidG3HoX914O59zHAeAaowVOscQ05xlhlC8wLYriBMz-kFMwQyQvs1uW03NwEcIOIVRyQmbgdRWGpjHR10ruobHWqBigszCapjNext4b6FoYonwzx8NniL5XI6hhl5KMzh8PX6kdYN3GJFCxdm24BGdW7oO5-q1z8LLdPK_vs8enu4f16jFTFPMioxznOmdWlxxxVGjLFCYWaY2ITKfYiiJaac6xotpIIiUhhUHMVAyXFVOczsHNNLfz7r03IYqd632bVgqS_uO4xAQl1nJiKe9C8MaKzteN9IPASIzmidEqMVolfsxLCj4pPuq9Gf6ji-1mPem-AUMNdJk</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Davidson, Andrew T.</creator><creator>Hamman, Elizabeth A.</creator><creator>McCoy, Michael W.</creator><creator>Vonesh, James R.</creator><creator>Marshall, Katie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6589-4699</orcidid></search><sort><creationdate>202105</creationdate><title>Asymmetrical effects of temperature on stage‐structured predator–prey interactions</title><author>Davidson, Andrew T. ; Hamman, Elizabeth A. ; McCoy, Michael W. ; Vonesh, James R. ; Marshall, Katie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3157-3516d64fd950507df4c12f0dd02affefb303bd551c3dea2aa227e04eb419b4c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Density</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Larvae</topic><topic>Mosquitoes</topic><topic>Predation</topic><topic>Predator-prey interactions</topic><topic>Predator-prey simulation</topic><topic>Predators</topic><topic>Prey</topic><topic>stage‐structured predation</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>theoretical modelling</topic><topic>thermal performance</topic><topic>warming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidson, Andrew T.</creatorcontrib><creatorcontrib>Hamman, Elizabeth A.</creatorcontrib><creatorcontrib>McCoy, Michael W.</creatorcontrib><creatorcontrib>Vonesh, James R.</creatorcontrib><creatorcontrib>Marshall, Katie</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidson, Andrew T.</au><au>Hamman, Elizabeth A.</au><au>McCoy, Michael W.</au><au>Vonesh, James R.</au><au>Marshall, Katie</au><au>Marshall, Katie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetrical effects of temperature on stage‐structured predator–prey interactions</atitle><jtitle>Functional ecology</jtitle><date>2021-05</date><risdate>2021</risdate><volume>35</volume><issue>5</issue><spage>1041</spage><epage>1054</epage><pages>1041-1054</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>Warming can impact consumer–resource interactions through multiple mechanisms. For example, warming can both alter the rate at which predators consume prey and the rate prey develop through vulnerable life stages. Thus, the overall effect of warming on consumer–resource interactions will depend upon the strength and asymmetry of warming effects on predator and prey performance. Here, we quantified the temperature dependence of both (a) density‐dependent predation rates for two dragonfly nymph predators on a shared mosquito larval prey, via the functional response, and (b) the development rate of mosquito larval prey to a predator‐invulnerable adult stage. We united the results of these two empirical studies using a temperature‐ and density‐dependent stage‐structured predation model to predict the effects of temperature on the number of larvae that survive to adulthood. Warming accelerated both larval mosquito development and increased dragonfly consumption. Model simulations suggest that differences in the magnitude and rate of predator and prey responses to warming determined the change in magnitude of the overall effect of predation on prey survival to adulthood. Specifically, we found that depending on which predator species prey were exposed to in the model, the net effect of warming was either an overall reduction or no change in predation strength across a temperature gradient. Our results highlight a need for better mechanistic understanding of the differential effects of temperature on consumer–resource pairs to accurately predict how warming affects food web dynamics. A free plain language summary can be found within the Supporting Information of this article. A free plain language summary can be found within the Supporting Information of this article.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2435.13777</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6589-4699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0269-8463
ispartof Functional ecology, 2021-05, Vol.35 (5), p.1041-1054
issn 0269-8463
1365-2435
language eng
recordid cdi_proquest_journals_2522519120
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content
subjects Asymmetry
Density
Food chains
Food webs
Larvae
Mosquitoes
Predation
Predator-prey interactions
Predator-prey simulation
Predators
Prey
stage‐structured predation
Temperature dependence
Temperature effects
Temperature gradients
theoretical modelling
thermal performance
warming
title Asymmetrical effects of temperature on stage‐structured predator–prey interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetrical%20effects%20of%20temperature%20on%20stage%E2%80%90structured%20predator%E2%80%93prey%20interactions&rft.jtitle=Functional%20ecology&rft.au=Davidson,%20Andrew%20T.&rft.date=2021-05&rft.volume=35&rft.issue=5&rft.spage=1041&rft.epage=1054&rft.pages=1041-1054&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/1365-2435.13777&rft_dat=%3Cproquest_cross%3E2522519120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522519120&rft_id=info:pmid/&rfr_iscdi=true