Multiscale Friction Simulation of Dry Polymer Contacts: Reaching Experimental Length Scales by Coupling Molecular Dynamics and Contact Mechanics

This work elucidates friction in Poly-Ether-Ether-Ketone (PEEK) sliding contacts through multiscale simulations. At the nanoscale, non-reactive classical molecular dynamics (MD) simulations of dry and water-lubricated amorphous PEEK–PEEK interfaces are performed. During a short running-in phase, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2021-06, Vol.69 (2), Article 70
Hauptverfasser: Savio, Daniele, Hamann, Jannik, Romero, Pedro A., Klingshirn, Christoph, Bactavatchalou, Ravindrakumar, Dienwiebel, Martin, Moseler, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work elucidates friction in Poly-Ether-Ether-Ketone (PEEK) sliding contacts through multiscale simulations. At the nanoscale, non-reactive classical molecular dynamics (MD) simulations of dry and water-lubricated amorphous PEEK–PEEK interfaces are performed. During a short running-in phase, we observe structural transformations at the sliding interface that result in flattening of the initial nanotopographies accompanied by strong polymer chain alignment in the shearing direction. The MD simulations also reveal a linear pressure – shear stress dependence and large adhesive friction in dry conditions. This dependence, summarized in a nanoscale friction law, is of central importance for our multiscale approach, since it forms a link between MD and elastoplastic contact mechanics calculations. An integration of the nanoscale friction law over the real area of contact yields a macroscopic friction coefficient that allows for a meaningful comparison with measurements from macroscopic tribometer experiments. Severe normal loading conditions result in significant wear and high experimental friction coefficients µ≈0.5–0.7, which are in good agreement with the calculated values from the multiscale approach in dry conditions. For milder experimental loads, our multiscale model suggests that lower friction states with µ≈0.2 originate in the presence of physisorbed molecules (e.g., water), which significantly reduce interfacial adhesion. Graphical Abstract
ISSN:1023-8883
1573-2711
DOI:10.1007/s11249-021-01444-8