Renormalization of Symmetric Bimodal Maps with Low Smoothness
This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space C 1 + L i p symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of C...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2021-05, Vol.183 (2), Article 29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 183 |
creator | Kumar, Rohit Chandramouli, V. V. M. S. |
description | This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space
C
1
+
L
i
p
symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of
C
1
+
L
i
p
symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps. |
doi_str_mv | 10.1007/s10955-021-02764-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522407223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660897774</galeid><sourcerecordid>A660897774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-fb48a09d81339d82a997c3a33cc7f694ee0f6e5c899fe82b685fb63f6d1aa5363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC56352HwdPNTiF1QEq-eQZpM2ZXdTky2l_nqjK3iTYWZgeJ-Z4QXgEsEJgpBfJwQlpSXEKCdnVSmOwAhRjkvJEDkGIwgxLiuO6Ck4S2kDIZRC0hG4ebVdiK1u_KfufeiK4IrFoW1tH70pbn0bat0Uz3qbir3v18U87ItFG0K_7mxK5-DE6SbZi98-Bu_3d2-zx3L-8vA0m85LQ6DsS7eshIayFoiQXLGWkhuiCTGGOyYra6FjlhohpbMCL5mgbsmIYzXSmhJGxuBq2LuN4WNnU682YRe7fFJhinEFOcYkqyaDaqUbq3znQh-1yVHb1pvQWefzfMoYFJJzXmUAD4CJIaVondpG3-p4UAiqb1_V4KvKvqofX5XIEBmglMXdysa_X_6hvgA-eXo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522407223</pqid></control><display><type>article</type><title>Renormalization of Symmetric Bimodal Maps with Low Smoothness</title><source>Springer Nature - Complete Springer Journals</source><creator>Kumar, Rohit ; Chandramouli, V. V. M. S.</creator><creatorcontrib>Kumar, Rohit ; Chandramouli, V. V. M. S.</creatorcontrib><description>This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space
C
1
+
L
i
p
symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of
C
1
+
L
i
p
symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-021-02764-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Smoothness ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2021-05, Vol.183 (2), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-fb48a09d81339d82a997c3a33cc7f694ee0f6e5c899fe82b685fb63f6d1aa5363</cites><orcidid>0000-0002-6331-2218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-021-02764-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-021-02764-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Rohit</creatorcontrib><creatorcontrib>Chandramouli, V. V. M. S.</creatorcontrib><title>Renormalization of Symmetric Bimodal Maps with Low Smoothness</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space
C
1
+
L
i
p
symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of
C
1
+
L
i
p
symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Smoothness</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC56352HwdPNTiF1QEq-eQZpM2ZXdTky2l_nqjK3iTYWZgeJ-Z4QXgEsEJgpBfJwQlpSXEKCdnVSmOwAhRjkvJEDkGIwgxLiuO6Ck4S2kDIZRC0hG4ebVdiK1u_KfufeiK4IrFoW1tH70pbn0bat0Uz3qbir3v18U87ItFG0K_7mxK5-DE6SbZi98-Bu_3d2-zx3L-8vA0m85LQ6DsS7eshIayFoiQXLGWkhuiCTGGOyYra6FjlhohpbMCL5mgbsmIYzXSmhJGxuBq2LuN4WNnU682YRe7fFJhinEFOcYkqyaDaqUbq3znQh-1yVHb1pvQWefzfMoYFJJzXmUAD4CJIaVondpG3-p4UAiqb1_V4KvKvqofX5XIEBmglMXdysa_X_6hvgA-eXo0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kumar, Rohit</creator><creator>Chandramouli, V. V. M. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6331-2218</orcidid></search><sort><creationdate>20210501</creationdate><title>Renormalization of Symmetric Bimodal Maps with Low Smoothness</title><author>Kumar, Rohit ; Chandramouli, V. V. M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-fb48a09d81339d82a997c3a33cc7f694ee0f6e5c899fe82b685fb63f6d1aa5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Smoothness</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rohit</creatorcontrib><creatorcontrib>Chandramouli, V. V. M. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Rohit</au><au>Chandramouli, V. V. M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization of Symmetric Bimodal Maps with Low Smoothness</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>183</volume><issue>2</issue><artnum>29</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space
C
1
+
L
i
p
symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of
C
1
+
L
i
p
symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-021-02764-8</doi><orcidid>https://orcid.org/0000-0002-6331-2218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2021-05, Vol.183 (2), Article 29 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2522407223 |
source | Springer Nature - Complete Springer Journals |
subjects | Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Smoothness Statistical Physics and Dynamical Systems Theoretical |
title | Renormalization of Symmetric Bimodal Maps with Low Smoothness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization%20of%20Symmetric%20Bimodal%20Maps%20with%20Low%20Smoothness&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Kumar,%20Rohit&rft.date=2021-05-01&rft.volume=183&rft.issue=2&rft.artnum=29&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-021-02764-8&rft_dat=%3Cgale_proqu%3EA660897774%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522407223&rft_id=info:pmid/&rft_galeid=A660897774&rfr_iscdi=true |