Renormalization of Symmetric Bimodal Maps with Low Smoothness

This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space C 1 + L i p symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2021-05, Vol.183 (2), Article 29
Hauptverfasser: Kumar, Rohit, Chandramouli, V. V. M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of statistical physics
container_volume 183
creator Kumar, Rohit
Chandramouli, V. V. M. S.
description This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space C 1 + L i p symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of C 1 + L i p symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.
doi_str_mv 10.1007/s10955-021-02764-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522407223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660897774</galeid><sourcerecordid>A660897774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-fb48a09d81339d82a997c3a33cc7f694ee0f6e5c899fe82b685fb63f6d1aa5363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC56352HwdPNTiF1QEq-eQZpM2ZXdTky2l_nqjK3iTYWZgeJ-Z4QXgEsEJgpBfJwQlpSXEKCdnVSmOwAhRjkvJEDkGIwgxLiuO6Ck4S2kDIZRC0hG4ebVdiK1u_KfufeiK4IrFoW1tH70pbn0bat0Uz3qbir3v18U87ItFG0K_7mxK5-DE6SbZi98-Bu_3d2-zx3L-8vA0m85LQ6DsS7eshIayFoiQXLGWkhuiCTGGOyYra6FjlhohpbMCL5mgbsmIYzXSmhJGxuBq2LuN4WNnU682YRe7fFJhinEFOcYkqyaDaqUbq3znQh-1yVHb1pvQWefzfMoYFJJzXmUAD4CJIaVondpG3-p4UAiqb1_V4KvKvqofX5XIEBmglMXdysa_X_6hvgA-eXo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522407223</pqid></control><display><type>article</type><title>Renormalization of Symmetric Bimodal Maps with Low Smoothness</title><source>Springer Nature - Complete Springer Journals</source><creator>Kumar, Rohit ; Chandramouli, V. V. M. S.</creator><creatorcontrib>Kumar, Rohit ; Chandramouli, V. V. M. S.</creatorcontrib><description>This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space C 1 + L i p symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of C 1 + L i p symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-021-02764-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Smoothness ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2021-05, Vol.183 (2), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-fb48a09d81339d82a997c3a33cc7f694ee0f6e5c899fe82b685fb63f6d1aa5363</cites><orcidid>0000-0002-6331-2218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-021-02764-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-021-02764-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Rohit</creatorcontrib><creatorcontrib>Chandramouli, V. V. M. S.</creatorcontrib><title>Renormalization of Symmetric Bimodal Maps with Low Smoothness</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space C 1 + L i p symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of C 1 + L i p symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Smoothness</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC56352HwdPNTiF1QEq-eQZpM2ZXdTky2l_nqjK3iTYWZgeJ-Z4QXgEsEJgpBfJwQlpSXEKCdnVSmOwAhRjkvJEDkGIwgxLiuO6Ck4S2kDIZRC0hG4ebVdiK1u_KfufeiK4IrFoW1tH70pbn0bat0Uz3qbir3v18U87ItFG0K_7mxK5-DE6SbZi98-Bu_3d2-zx3L-8vA0m85LQ6DsS7eshIayFoiQXLGWkhuiCTGGOyYra6FjlhohpbMCL5mgbsmIYzXSmhJGxuBq2LuN4WNnU682YRe7fFJhinEFOcYkqyaDaqUbq3znQh-1yVHb1pvQWefzfMoYFJJzXmUAD4CJIaVondpG3-p4UAiqb1_V4KvKvqofX5XIEBmglMXdysa_X_6hvgA-eXo0</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kumar, Rohit</creator><creator>Chandramouli, V. V. M. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6331-2218</orcidid></search><sort><creationdate>20210501</creationdate><title>Renormalization of Symmetric Bimodal Maps with Low Smoothness</title><author>Kumar, Rohit ; Chandramouli, V. V. M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-fb48a09d81339d82a997c3a33cc7f694ee0f6e5c899fe82b685fb63f6d1aa5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Smoothness</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rohit</creatorcontrib><creatorcontrib>Chandramouli, V. V. M. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Rohit</au><au>Chandramouli, V. V. M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization of Symmetric Bimodal Maps with Low Smoothness</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>183</volume><issue>2</issue><artnum>29</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space C 1 + L i p symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of C 1 + L i p symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-021-02764-8</doi><orcidid>https://orcid.org/0000-0002-6331-2218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2021-05, Vol.183 (2), Article 29
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2522407223
source Springer Nature - Complete Springer Journals
subjects Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Smoothness
Statistical Physics and Dynamical Systems
Theoretical
title Renormalization of Symmetric Bimodal Maps with Low Smoothness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization%20of%20Symmetric%20Bimodal%20Maps%20with%20Low%20Smoothness&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Kumar,%20Rohit&rft.date=2021-05-01&rft.volume=183&rft.issue=2&rft.artnum=29&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-021-02764-8&rft_dat=%3Cgale_proqu%3EA660897774%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522407223&rft_id=info:pmid/&rft_galeid=A660897774&rfr_iscdi=true