Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data

Monitoring water quality is an important challenge in both developed and developing countries. Remote sensing data can form a highly frequent dataset with acceptable spatial coverage that can be used to remotely monitor water quality. This paper presents a novel automated model for remotely monitori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.65730-65749
Hauptverfasser: Hassan, Gehad, Goher, Mohamed E., Shaheen, Masoud E., Taie, Shereen A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65749
container_issue
container_start_page 65730
container_title IEEE access
container_volume 9
creator Hassan, Gehad
Goher, Mohamed E.
Shaheen, Masoud E.
Taie, Shereen A.
description Monitoring water quality is an important challenge in both developed and developing countries. Remote sensing data can form a highly frequent dataset with acceptable spatial coverage that can be used to remotely monitor water quality. This paper presents a novel automated model for remotely monitoring water quality to address the problem of insufficient samples and save the time and cost of sample collection. The proposed model estimates both optical and non-optical water quality parameters via Sentinel-2A data. A bio-inspired hybrid model of a Binary Whale Optimization Algorithm (BWOA) and Artificial Neural Network (ANN) (BWOA-ANN) is applied to determine the relationship between extracted reflectance values from Sentinel-2A images and analyzed samples. The novelty of this model is to solve two main problems of remote water quality monitoring: poor applicability and low non-optical parameter estimation accuracy. For the first problem, a proposed fully automated model with band selection using the BWOA to automatically select the optimal features (Sentinel-2A bands) that are suitable for each water quality parameter. The second problem is addressed by automatically detecting the relationship between non-optical parameters, such as the total phosphorus, and optical parameters, such as chlorophyll-a. Three datasets with different locations, seasons, and parameters were selected to test the proposed BWOA-ANN. The experimental results demonstrated good regression with a mean {R}^{2} value of 0.916 for optical parameters and 0.890 for non-optical parameters. The proposed model was found to outperform the ANN with an {R}^{2} value higher by 40% and 52% for the optical and non-optical parameters, respectively.
doi_str_mv 10.1109/ACCESS.2021.3075849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522217071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416446</ieee_id><doaj_id>oai_doaj_org_article_8669c6baac6e4037b6f431a011e0d6ec</doaj_id><sourcerecordid>2522217071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-91b9c177c1c3bba61c28bdae5454854b98e7a7262d4a627caf55ff91032cd3213</originalsourceid><addsrcrecordid>eNpNkVtr3DAQhU1poSHNL8iLoM_eanS1H7dumgS29LItfRRjaRy0uFYqawv77-utQ-i8zHCYc2bgq6pr4BsA3r7bdt3Nfr8RXMBGcqsb1b6oLgSYtpZampf_za-rq3k-8KWaRdL2ovp2d-pzDOxLphB9iX-IfUqBRjakzH5iocy-HnGM5bToUywpx-mBvceZAksT29NU4kRjLbZsBx37gAXfVK8GHGe6euqX1Y-PN9-7u3r3-fa-2-5qr3hT6hb61oO1HrzsezTgRdMHJK20arTq24YsWmFEUGiE9ThoPQwtcCl8kALkZXW_5oaEB_eY4y_MJ5cwun9Cyg8Oc4l-JNcY03rTI3pDikvbm0FJQA5APBjyS9bbNesxp99Hmos7pGOelved0EIIsNyeL8p1y-c0z5mG56vA3ZmFW1m4Mwv3xGJxXa-uSETPjlaBUcrIv6M3gws</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522217071</pqid></control><display><type>article</type><title>Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hassan, Gehad ; Goher, Mohamed E. ; Shaheen, Masoud E. ; Taie, Shereen A.</creator><creatorcontrib>Hassan, Gehad ; Goher, Mohamed E. ; Shaheen, Masoud E. ; Taie, Shereen A.</creatorcontrib><description><![CDATA[Monitoring water quality is an important challenge in both developed and developing countries. Remote sensing data can form a highly frequent dataset with acceptable spatial coverage that can be used to remotely monitor water quality. This paper presents a novel automated model for remotely monitoring water quality to address the problem of insufficient samples and save the time and cost of sample collection. The proposed model estimates both optical and non-optical water quality parameters via Sentinel-2A data. A bio-inspired hybrid model of a Binary Whale Optimization Algorithm (BWOA) and Artificial Neural Network (ANN) (BWOA-ANN) is applied to determine the relationship between extracted reflectance values from Sentinel-2A images and analyzed samples. The novelty of this model is to solve two main problems of remote water quality monitoring: poor applicability and low non-optical parameter estimation accuracy. For the first problem, a proposed fully automated model with band selection using the BWOA to automatically select the optimal features (Sentinel-2A bands) that are suitable for each water quality parameter. The second problem is addressed by automatically detecting the relationship between non-optical parameters, such as the total phosphorus, and optical parameters, such as chlorophyll-a. Three datasets with different locations, seasons, and parameters were selected to test the proposed BWOA-ANN. The experimental results demonstrated good regression with a mean <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> value of 0.916 for optical parameters and 0.890 for non-optical parameters. The proposed model was found to outperform the ANN with an <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> value higher by 40% and 52% for the optical and non-optical parameters, respectively.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3075849</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural network (ANN) ; Artificial neural networks ; Artificial satellites ; Automation ; Biomimetics ; Chlorophyll ; Datasets ; Developing countries ; Earth ; Environmental monitoring ; feature selection ; LDCs ; Mathematical models ; Monitoring ; Optical imaging ; Optical sensors ; Optimization ; Parameter estimation ; Prediction models ; Remote monitoring ; Remote sensing ; Sentinel-2 ; Water quality ; water quality monitoring ; whale optimization algorithm (WOA)</subject><ispartof>IEEE access, 2021, Vol.9, p.65730-65749</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-91b9c177c1c3bba61c28bdae5454854b98e7a7262d4a627caf55ff91032cd3213</citedby><cites>FETCH-LOGICAL-c408t-91b9c177c1c3bba61c28bdae5454854b98e7a7262d4a627caf55ff91032cd3213</cites><orcidid>0000-0002-3506-1001 ; 0000-0001-9377-2429 ; 0000-0003-4853-3415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416446$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27622,27912,27913,27914,54922</link.rule.ids></links><search><creatorcontrib>Hassan, Gehad</creatorcontrib><creatorcontrib>Goher, Mohamed E.</creatorcontrib><creatorcontrib>Shaheen, Masoud E.</creatorcontrib><creatorcontrib>Taie, Shereen A.</creatorcontrib><title>Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Monitoring water quality is an important challenge in both developed and developing countries. Remote sensing data can form a highly frequent dataset with acceptable spatial coverage that can be used to remotely monitor water quality. This paper presents a novel automated model for remotely monitoring water quality to address the problem of insufficient samples and save the time and cost of sample collection. The proposed model estimates both optical and non-optical water quality parameters via Sentinel-2A data. A bio-inspired hybrid model of a Binary Whale Optimization Algorithm (BWOA) and Artificial Neural Network (ANN) (BWOA-ANN) is applied to determine the relationship between extracted reflectance values from Sentinel-2A images and analyzed samples. The novelty of this model is to solve two main problems of remote water quality monitoring: poor applicability and low non-optical parameter estimation accuracy. For the first problem, a proposed fully automated model with band selection using the BWOA to automatically select the optimal features (Sentinel-2A bands) that are suitable for each water quality parameter. The second problem is addressed by automatically detecting the relationship between non-optical parameters, such as the total phosphorus, and optical parameters, such as chlorophyll-a. Three datasets with different locations, seasons, and parameters were selected to test the proposed BWOA-ANN. The experimental results demonstrated good regression with a mean <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> value of 0.916 for optical parameters and 0.890 for non-optical parameters. The proposed model was found to outperform the ANN with an <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> value higher by 40% and 52% for the optical and non-optical parameters, respectively.]]></description><subject>Algorithms</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Artificial satellites</subject><subject>Automation</subject><subject>Biomimetics</subject><subject>Chlorophyll</subject><subject>Datasets</subject><subject>Developing countries</subject><subject>Earth</subject><subject>Environmental monitoring</subject><subject>feature selection</subject><subject>LDCs</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Prediction models</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Sentinel-2</subject><subject>Water quality</subject><subject>water quality monitoring</subject><subject>whale optimization algorithm (WOA)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtr3DAQhU1poSHNL8iLoM_eanS1H7dumgS29LItfRRjaRy0uFYqawv77-utQ-i8zHCYc2bgq6pr4BsA3r7bdt3Nfr8RXMBGcqsb1b6oLgSYtpZampf_za-rq3k-8KWaRdL2ovp2d-pzDOxLphB9iX-IfUqBRjakzH5iocy-HnGM5bToUywpx-mBvceZAksT29NU4kRjLbZsBx37gAXfVK8GHGe6euqX1Y-PN9-7u3r3-fa-2-5qr3hT6hb61oO1HrzsezTgRdMHJK20arTq24YsWmFEUGiE9ThoPQwtcCl8kALkZXW_5oaEB_eY4y_MJ5cwun9Cyg8Oc4l-JNcY03rTI3pDikvbm0FJQA5APBjyS9bbNesxp99Hmos7pGOelved0EIIsNyeL8p1y-c0z5mG56vA3ZmFW1m4Mwv3xGJxXa-uSETPjlaBUcrIv6M3gws</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hassan, Gehad</creator><creator>Goher, Mohamed E.</creator><creator>Shaheen, Masoud E.</creator><creator>Taie, Shereen A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3506-1001</orcidid><orcidid>https://orcid.org/0000-0001-9377-2429</orcidid><orcidid>https://orcid.org/0000-0003-4853-3415</orcidid></search><sort><creationdate>2021</creationdate><title>Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data</title><author>Hassan, Gehad ; Goher, Mohamed E. ; Shaheen, Masoud E. ; Taie, Shereen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-91b9c177c1c3bba61c28bdae5454854b98e7a7262d4a627caf55ff91032cd3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Artificial satellites</topic><topic>Automation</topic><topic>Biomimetics</topic><topic>Chlorophyll</topic><topic>Datasets</topic><topic>Developing countries</topic><topic>Earth</topic><topic>Environmental monitoring</topic><topic>feature selection</topic><topic>LDCs</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Prediction models</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Sentinel-2</topic><topic>Water quality</topic><topic>water quality monitoring</topic><topic>whale optimization algorithm (WOA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Gehad</creatorcontrib><creatorcontrib>Goher, Mohamed E.</creatorcontrib><creatorcontrib>Shaheen, Masoud E.</creatorcontrib><creatorcontrib>Taie, Shereen A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Gehad</au><au>Goher, Mohamed E.</au><au>Shaheen, Masoud E.</au><au>Taie, Shereen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>65730</spage><epage>65749</epage><pages>65730-65749</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Monitoring water quality is an important challenge in both developed and developing countries. Remote sensing data can form a highly frequent dataset with acceptable spatial coverage that can be used to remotely monitor water quality. This paper presents a novel automated model for remotely monitoring water quality to address the problem of insufficient samples and save the time and cost of sample collection. The proposed model estimates both optical and non-optical water quality parameters via Sentinel-2A data. A bio-inspired hybrid model of a Binary Whale Optimization Algorithm (BWOA) and Artificial Neural Network (ANN) (BWOA-ANN) is applied to determine the relationship between extracted reflectance values from Sentinel-2A images and analyzed samples. The novelty of this model is to solve two main problems of remote water quality monitoring: poor applicability and low non-optical parameter estimation accuracy. For the first problem, a proposed fully automated model with band selection using the BWOA to automatically select the optimal features (Sentinel-2A bands) that are suitable for each water quality parameter. The second problem is addressed by automatically detecting the relationship between non-optical parameters, such as the total phosphorus, and optical parameters, such as chlorophyll-a. Three datasets with different locations, seasons, and parameters were selected to test the proposed BWOA-ANN. The experimental results demonstrated good regression with a mean <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> value of 0.916 for optical parameters and 0.890 for non-optical parameters. The proposed model was found to outperform the ANN with an <inline-formula> <tex-math notation="LaTeX">{R}^{2} </tex-math></inline-formula> value higher by 40% and 52% for the optical and non-optical parameters, respectively.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3075849</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3506-1001</orcidid><orcidid>https://orcid.org/0000-0001-9377-2429</orcidid><orcidid>https://orcid.org/0000-0003-4853-3415</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.65730-65749
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2522217071
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural network (ANN)
Artificial neural networks
Artificial satellites
Automation
Biomimetics
Chlorophyll
Datasets
Developing countries
Earth
Environmental monitoring
feature selection
LDCs
Mathematical models
Monitoring
Optical imaging
Optical sensors
Optimization
Parameter estimation
Prediction models
Remote monitoring
Remote sensing
Sentinel-2
Water quality
water quality monitoring
whale optimization algorithm (WOA)
title Hybrid Predictive Model for Water Quality Monitoring Based on Sentinel-2A L1C Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Predictive%20Model%20for%20Water%20Quality%20Monitoring%20Based%20on%20Sentinel-2A%20L1C%20Data&rft.jtitle=IEEE%20access&rft.au=Hassan,%20Gehad&rft.date=2021&rft.volume=9&rft.spage=65730&rft.epage=65749&rft.pages=65730-65749&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3075849&rft_dat=%3Cproquest_cross%3E2522217071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522217071&rft_id=info:pmid/&rft_ieee_id=9416446&rft_doaj_id=oai_doaj_org_article_8669c6baac6e4037b6f431a011e0d6ec&rfr_iscdi=true