Development of a High Peak Voltage Picoseconds Avalanche Transistor Based Marx Bank Circuit

Avalanche transistor-based Marx bank circuit (MBC) is widely used to generate high voltage nanosecond pulses with high amplitude, high repetition rate, fast rise time, and low jitter. Researchers have tried to modify the circuit structure by using parallel or series avalanche transistors to increase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.64844-64851
Hauptverfasser: He, Renjie, Li, Yang, Liu, Zhennan, Jin, Jiahao, Sun, Zhengchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64851
container_issue
container_start_page 64844
container_title IEEE access
container_volume 9
creator He, Renjie
Li, Yang
Liu, Zhennan
Jin, Jiahao
Sun, Zhengchun
description Avalanche transistor-based Marx bank circuit (MBC) is widely used to generate high voltage nanosecond pulses with high amplitude, high repetition rate, fast rise time, and low jitter. Researchers have tried to modify the circuit structure by using parallel or series avalanche transistors to increase peak power. However, in this work, the detailed process of analyzing and designing a compact Marx generator using avalanche transistors will be described. The purpose of this article is to report our experimental observations on the mechanism of operation of the MBCs. By studying the influence of amplitude and pulse width of the trigger circuit, a Gaussian pulse with a rising edge of 160 ps, full width at half maximum (FWHM) of 660 ps, and amplitude of 5000 V are obtained. The design improves the output voltage and pulse repetition frequency (PRF) effectively while reducing the use of the number of transistors. Based on the conventional principles of avalanche transistors and Marx circuit, a list of useful and interesting conclusions obtained from experiments will be reported.
doi_str_mv 10.1109/ACCESS.2021.3075960
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2522216960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416670</ieee_id><doaj_id>oai_doaj_org_article_70cf3819d5a14e02b3cf6356e726e4b2</doaj_id><sourcerecordid>2522216960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4f07004724ce6b65f8772f57f53f37fef80fd05dc8748ceb34e15e0b2117d2813</originalsourceid><addsrcrecordid>eNpNUU1r20AQFaWFhjS_wJeFnu3OfktHR0lrQ0oCSXPJYVmtZu11FK27K5v231euQshcZni892aYVxQzCgtKofq2rOvr-_sFA0YXHLSsFHwozhhV1ZxLrj6-mz8XFznvYKxyhKQ-K56u8Ihd3L9gP5DoiSWrsNmSO7TP5DF2g90guQsuZnSxbzNZHm1ne7dF8pBsn0MeYiKXNmNLftr0Zxz7Z1KH5A5h-FJ88rbLePHaz4tf368f6tX85vbHul7ezJ2Q5TAXHjSA0Ew4VI2SvtSaeam95J5rj74E34JsXalF6bDhAqlEaBilumUl5efFevJto92ZfQovNv010QbzH4hpY2waguvQaHCel7RqpaUCgTXcecWlQs0UioaNXl8nr32Kvw-YB7OLh9SP5xsmGTt9UsHI4hPLpZhzQv-2lYI5hWKmUMwpFPMayqiaTaqAiG-KSlClNPB_iUGGgw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522216960</pqid></control><display><type>article</type><title>Development of a High Peak Voltage Picoseconds Avalanche Transistor Based Marx Bank Circuit</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>He, Renjie ; Li, Yang ; Liu, Zhennan ; Jin, Jiahao ; Sun, Zhengchun</creator><creatorcontrib>He, Renjie ; Li, Yang ; Liu, Zhennan ; Jin, Jiahao ; Sun, Zhengchun</creatorcontrib><description>Avalanche transistor-based Marx bank circuit (MBC) is widely used to generate high voltage nanosecond pulses with high amplitude, high repetition rate, fast rise time, and low jitter. Researchers have tried to modify the circuit structure by using parallel or series avalanche transistors to increase peak power. However, in this work, the detailed process of analyzing and designing a compact Marx generator using avalanche transistors will be described. The purpose of this article is to report our experimental observations on the mechanism of operation of the MBCs. By studying the influence of amplitude and pulse width of the trigger circuit, a Gaussian pulse with a rising edge of 160 ps, full width at half maximum (FWHM) of 660 ps, and amplitude of 5000 V are obtained. The design improves the output voltage and pulse repetition frequency (PRF) effectively while reducing the use of the number of transistors. Based on the conventional principles of avalanche transistors and Marx circuit, a list of useful and interesting conclusions obtained from experiments will be reported.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3075960</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amplitudes ; avalanche transistor ; Avalanche transistors ; Capacitors ; Discharges (electric) ; Fitting ; Gaussian signal ; Generators ; High power pulse source ; Marx circuit ; Marx generators ; Nanosecond pulses ; Pulse duration ; Pulse repetition frequency ; Semiconductor devices ; Switching circuits ; Transistors ; Trigger circuits ; Vibration</subject><ispartof>IEEE access, 2021, Vol.9, p.64844-64851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4f07004724ce6b65f8772f57f53f37fef80fd05dc8748ceb34e15e0b2117d2813</citedby><cites>FETCH-LOGICAL-c458t-4f07004724ce6b65f8772f57f53f37fef80fd05dc8748ceb34e15e0b2117d2813</cites><orcidid>0000-0003-3676-0338 ; 0000-0002-5681-2484 ; 0000-0002-2166-0134 ; 0000-0002-1377-7690 ; 0000-0003-1285-7928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416670$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>He, Renjie</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liu, Zhennan</creatorcontrib><creatorcontrib>Jin, Jiahao</creatorcontrib><creatorcontrib>Sun, Zhengchun</creatorcontrib><title>Development of a High Peak Voltage Picoseconds Avalanche Transistor Based Marx Bank Circuit</title><title>IEEE access</title><addtitle>Access</addtitle><description>Avalanche transistor-based Marx bank circuit (MBC) is widely used to generate high voltage nanosecond pulses with high amplitude, high repetition rate, fast rise time, and low jitter. Researchers have tried to modify the circuit structure by using parallel or series avalanche transistors to increase peak power. However, in this work, the detailed process of analyzing and designing a compact Marx generator using avalanche transistors will be described. The purpose of this article is to report our experimental observations on the mechanism of operation of the MBCs. By studying the influence of amplitude and pulse width of the trigger circuit, a Gaussian pulse with a rising edge of 160 ps, full width at half maximum (FWHM) of 660 ps, and amplitude of 5000 V are obtained. The design improves the output voltage and pulse repetition frequency (PRF) effectively while reducing the use of the number of transistors. Based on the conventional principles of avalanche transistors and Marx circuit, a list of useful and interesting conclusions obtained from experiments will be reported.</description><subject>Amplitudes</subject><subject>avalanche transistor</subject><subject>Avalanche transistors</subject><subject>Capacitors</subject><subject>Discharges (electric)</subject><subject>Fitting</subject><subject>Gaussian signal</subject><subject>Generators</subject><subject>High power pulse source</subject><subject>Marx circuit</subject><subject>Marx generators</subject><subject>Nanosecond pulses</subject><subject>Pulse duration</subject><subject>Pulse repetition frequency</subject><subject>Semiconductor devices</subject><subject>Switching circuits</subject><subject>Transistors</subject><subject>Trigger circuits</subject><subject>Vibration</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r20AQFaWFhjS_wJeFnu3OfktHR0lrQ0oCSXPJYVmtZu11FK27K5v231euQshcZni892aYVxQzCgtKofq2rOvr-_sFA0YXHLSsFHwozhhV1ZxLrj6-mz8XFznvYKxyhKQ-K56u8Ihd3L9gP5DoiSWrsNmSO7TP5DF2g90guQsuZnSxbzNZHm1ne7dF8pBsn0MeYiKXNmNLftr0Zxz7Z1KH5A5h-FJ88rbLePHaz4tf368f6tX85vbHul7ezJ2Q5TAXHjSA0Ew4VI2SvtSaeam95J5rj74E34JsXalF6bDhAqlEaBilumUl5efFevJto92ZfQovNv010QbzH4hpY2waguvQaHCel7RqpaUCgTXcecWlQs0UioaNXl8nr32Kvw-YB7OLh9SP5xsmGTt9UsHI4hPLpZhzQv-2lYI5hWKmUMwpFPMayqiaTaqAiG-KSlClNPB_iUGGgw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>He, Renjie</creator><creator>Li, Yang</creator><creator>Liu, Zhennan</creator><creator>Jin, Jiahao</creator><creator>Sun, Zhengchun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3676-0338</orcidid><orcidid>https://orcid.org/0000-0002-5681-2484</orcidid><orcidid>https://orcid.org/0000-0002-2166-0134</orcidid><orcidid>https://orcid.org/0000-0002-1377-7690</orcidid><orcidid>https://orcid.org/0000-0003-1285-7928</orcidid></search><sort><creationdate>2021</creationdate><title>Development of a High Peak Voltage Picoseconds Avalanche Transistor Based Marx Bank Circuit</title><author>He, Renjie ; Li, Yang ; Liu, Zhennan ; Jin, Jiahao ; Sun, Zhengchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4f07004724ce6b65f8772f57f53f37fef80fd05dc8748ceb34e15e0b2117d2813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>avalanche transistor</topic><topic>Avalanche transistors</topic><topic>Capacitors</topic><topic>Discharges (electric)</topic><topic>Fitting</topic><topic>Gaussian signal</topic><topic>Generators</topic><topic>High power pulse source</topic><topic>Marx circuit</topic><topic>Marx generators</topic><topic>Nanosecond pulses</topic><topic>Pulse duration</topic><topic>Pulse repetition frequency</topic><topic>Semiconductor devices</topic><topic>Switching circuits</topic><topic>Transistors</topic><topic>Trigger circuits</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Renjie</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liu, Zhennan</creatorcontrib><creatorcontrib>Jin, Jiahao</creatorcontrib><creatorcontrib>Sun, Zhengchun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Renjie</au><au>Li, Yang</au><au>Liu, Zhennan</au><au>Jin, Jiahao</au><au>Sun, Zhengchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a High Peak Voltage Picoseconds Avalanche Transistor Based Marx Bank Circuit</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>64844</spage><epage>64851</epage><pages>64844-64851</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Avalanche transistor-based Marx bank circuit (MBC) is widely used to generate high voltage nanosecond pulses with high amplitude, high repetition rate, fast rise time, and low jitter. Researchers have tried to modify the circuit structure by using parallel or series avalanche transistors to increase peak power. However, in this work, the detailed process of analyzing and designing a compact Marx generator using avalanche transistors will be described. The purpose of this article is to report our experimental observations on the mechanism of operation of the MBCs. By studying the influence of amplitude and pulse width of the trigger circuit, a Gaussian pulse with a rising edge of 160 ps, full width at half maximum (FWHM) of 660 ps, and amplitude of 5000 V are obtained. The design improves the output voltage and pulse repetition frequency (PRF) effectively while reducing the use of the number of transistors. Based on the conventional principles of avalanche transistors and Marx circuit, a list of useful and interesting conclusions obtained from experiments will be reported.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3075960</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3676-0338</orcidid><orcidid>https://orcid.org/0000-0002-5681-2484</orcidid><orcidid>https://orcid.org/0000-0002-2166-0134</orcidid><orcidid>https://orcid.org/0000-0002-1377-7690</orcidid><orcidid>https://orcid.org/0000-0003-1285-7928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.64844-64851
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2522216960
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amplitudes
avalanche transistor
Avalanche transistors
Capacitors
Discharges (electric)
Fitting
Gaussian signal
Generators
High power pulse source
Marx circuit
Marx generators
Nanosecond pulses
Pulse duration
Pulse repetition frequency
Semiconductor devices
Switching circuits
Transistors
Trigger circuits
Vibration
title Development of a High Peak Voltage Picoseconds Avalanche Transistor Based Marx Bank Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20High%20Peak%20Voltage%20Picoseconds%20Avalanche%20Transistor%20Based%20Marx%20Bank%20Circuit&rft.jtitle=IEEE%20access&rft.au=He,%20Renjie&rft.date=2021&rft.volume=9&rft.spage=64844&rft.epage=64851&rft.pages=64844-64851&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3075960&rft_dat=%3Cproquest_doaj_%3E2522216960%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522216960&rft_id=info:pmid/&rft_ieee_id=9416670&rft_doaj_id=oai_doaj_org_article_70cf3819d5a14e02b3cf6356e726e4b2&rfr_iscdi=true