Conjugate Direction Methods for Multiple Solution of Slaes
Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, defla...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-06, Vol.255 (3), p.231-241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 3 |
container_start_page | 231 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 255 |
creator | Gurieva, Y. L. Il’in, V. P. |
description | Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided. |
doi_str_mv | 10.1007/s10958-021-05365-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522123766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726886611</galeid><sourcerecordid>A726886611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3248-bc5d715b7aec146aedd9b1b678c5b1587251ebe0e2a5baac6ac4a2354fb827723</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuCV15k5qP5mHdjfg0mgtPrkKantaNrZtKC_nvjJozBkFyckPM850DeJLkkeEQwljeB4DFXCFOCMGeCI3WUDAiXDCk55sfxjiVFjMnsNDkLYYmjJBQbJLdT1y77ynSQ3tUebFe7Nn2G7sMVIS2dT5_7pqvXDaQL1_SbrivTRWMgnCcnpWkCXPzVYfL-cP82fULzl8fZdDJHltFModzyQhKeSwOWZMJAUYxzkgupLM8JV5JyAjlgoIbnxlhhbGYo41mZKyolZcPkajt37d1nD6HTS9f7Nq7UlFNKKJNC7KjKNKDrtnSdN3ZVB6snkgqlhCAkUugAVUEL3jSuhbKOz3v86AAfTwGr2h4UrveEyHTw1VWmD0HPFq_7LN2y1rsQPJR67euV8d-aYP0bq97GqmOsehOrVlFiWylEuK3A737jH-sHToqh1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522123766</pqid></control><display><type>article</type><title>Conjugate Direction Methods for Multiple Solution of Slaes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gurieva, Y. L. ; Il’in, V. P.</creator><creatorcontrib>Gurieva, Y. L. ; Il’in, V. P.</creatorcontrib><description>Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05365-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Conjugates ; Iterative methods ; Iterative solution ; Linear algebra ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Matrix methods ; Methods ; Vectors (mathematics)</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (3), p.231-241</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3248-bc5d715b7aec146aedd9b1b678c5b1587251ebe0e2a5baac6ac4a2354fb827723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05365-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05365-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gurieva, Y. L.</creatorcontrib><creatorcontrib>Il’in, V. P.</creatorcontrib><title>Conjugate Direction Methods for Multiple Solution of Slaes</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided.</description><subject>Algorithms</subject><subject>Conjugates</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Methods</subject><subject>Vectors (mathematics)</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOKd_wKuCV15k5qP5mHdjfg0mgtPrkKantaNrZtKC_nvjJozBkFyckPM850DeJLkkeEQwljeB4DFXCFOCMGeCI3WUDAiXDCk55sfxjiVFjMnsNDkLYYmjJBQbJLdT1y77ynSQ3tUebFe7Nn2G7sMVIS2dT5_7pqvXDaQL1_SbrivTRWMgnCcnpWkCXPzVYfL-cP82fULzl8fZdDJHltFModzyQhKeSwOWZMJAUYxzkgupLM8JV5JyAjlgoIbnxlhhbGYo41mZKyolZcPkajt37d1nD6HTS9f7Nq7UlFNKKJNC7KjKNKDrtnSdN3ZVB6snkgqlhCAkUugAVUEL3jSuhbKOz3v86AAfTwGr2h4UrveEyHTw1VWmD0HPFq_7LN2y1rsQPJR67euV8d-aYP0bq97GqmOsehOrVlFiWylEuK3A737jH-sHToqh1w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gurieva, Y. L.</creator><creator>Il’in, V. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210601</creationdate><title>Conjugate Direction Methods for Multiple Solution of Slaes</title><author>Gurieva, Y. L. ; Il’in, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3248-bc5d715b7aec146aedd9b1b678c5b1587251ebe0e2a5baac6ac4a2354fb827723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Conjugates</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Methods</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurieva, Y. L.</creatorcontrib><creatorcontrib>Il’in, V. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurieva, Y. L.</au><au>Il’in, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugate Direction Methods for Multiple Solution of Slaes</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>255</volume><issue>3</issue><spage>231</spage><epage>241</epage><pages>231-241</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05365-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (3), p.231-241 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2522123766 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Conjugates Iterative methods Iterative solution Linear algebra Mathematical analysis Mathematics Mathematics and Statistics Matrix algebra Matrix methods Methods Vectors (mathematics) |
title | Conjugate Direction Methods for Multiple Solution of Slaes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugate%20Direction%20Methods%20for%20Multiple%20Solution%20of%20Slaes&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Gurieva,%20Y.%20L.&rft.date=2021-06-01&rft.volume=255&rft.issue=3&rft.spage=231&rft.epage=241&rft.pages=231-241&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05365-8&rft_dat=%3Cgale_proqu%3EA726886611%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522123766&rft_id=info:pmid/&rft_galeid=A726886611&rfr_iscdi=true |