Conjugate Direction Methods for Multiple Solution of Slaes

Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, defla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-06, Vol.255 (3), p.231-241
Hauptverfasser: Gurieva, Y. L., Il’in, V. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 3
container_start_page 231
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 255
creator Gurieva, Y. L.
Il’in, V. P.
description Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided.
doi_str_mv 10.1007/s10958-021-05365-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522123766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726886611</galeid><sourcerecordid>A726886611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3248-bc5d715b7aec146aedd9b1b678c5b1587251ebe0e2a5baac6ac4a2354fb827723</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOKd_wKuCV15k5qP5mHdjfg0mgtPrkKantaNrZtKC_nvjJozBkFyckPM850DeJLkkeEQwljeB4DFXCFOCMGeCI3WUDAiXDCk55sfxjiVFjMnsNDkLYYmjJBQbJLdT1y77ynSQ3tUebFe7Nn2G7sMVIS2dT5_7pqvXDaQL1_SbrivTRWMgnCcnpWkCXPzVYfL-cP82fULzl8fZdDJHltFModzyQhKeSwOWZMJAUYxzkgupLM8JV5JyAjlgoIbnxlhhbGYo41mZKyolZcPkajt37d1nD6HTS9f7Nq7UlFNKKJNC7KjKNKDrtnSdN3ZVB6snkgqlhCAkUugAVUEL3jSuhbKOz3v86AAfTwGr2h4UrveEyHTw1VWmD0HPFq_7LN2y1rsQPJR67euV8d-aYP0bq97GqmOsehOrVlFiWylEuK3A737jH-sHToqh1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522123766</pqid></control><display><type>article</type><title>Conjugate Direction Methods for Multiple Solution of Slaes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gurieva, Y. L. ; Il’in, V. P.</creator><creatorcontrib>Gurieva, Y. L. ; Il’in, V. P.</creatorcontrib><description>Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05365-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Conjugates ; Iterative methods ; Iterative solution ; Linear algebra ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Matrix methods ; Methods ; Vectors (mathematics)</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (3), p.231-241</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3248-bc5d715b7aec146aedd9b1b678c5b1587251ebe0e2a5baac6ac4a2354fb827723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05365-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05365-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gurieva, Y. L.</creatorcontrib><creatorcontrib>Il’in, V. P.</creatorcontrib><title>Conjugate Direction Methods for Multiple Solution of Slaes</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided.</description><subject>Algorithms</subject><subject>Conjugates</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Methods</subject><subject>Vectors (mathematics)</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOKd_wKuCV15k5qP5mHdjfg0mgtPrkKantaNrZtKC_nvjJozBkFyckPM850DeJLkkeEQwljeB4DFXCFOCMGeCI3WUDAiXDCk55sfxjiVFjMnsNDkLYYmjJBQbJLdT1y77ynSQ3tUebFe7Nn2G7sMVIS2dT5_7pqvXDaQL1_SbrivTRWMgnCcnpWkCXPzVYfL-cP82fULzl8fZdDJHltFModzyQhKeSwOWZMJAUYxzkgupLM8JV5JyAjlgoIbnxlhhbGYo41mZKyolZcPkajt37d1nD6HTS9f7Nq7UlFNKKJNC7KjKNKDrtnSdN3ZVB6snkgqlhCAkUugAVUEL3jSuhbKOz3v86AAfTwGr2h4UrveEyHTw1VWmD0HPFq_7LN2y1rsQPJR67euV8d-aYP0bq97GqmOsehOrVlFiWylEuK3A737jH-sHToqh1w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gurieva, Y. L.</creator><creator>Il’in, V. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210601</creationdate><title>Conjugate Direction Methods for Multiple Solution of Slaes</title><author>Gurieva, Y. L. ; Il’in, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3248-bc5d715b7aec146aedd9b1b678c5b1587251ebe0e2a5baac6ac4a2354fb827723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Conjugates</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Methods</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurieva, Y. L.</creatorcontrib><creatorcontrib>Il’in, V. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurieva, Y. L.</au><au>Il’in, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugate Direction Methods for Multiple Solution of Slaes</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>255</volume><issue>3</issue><spage>231</spage><epage>241</epage><pages>231-241</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Conjugate gradient and conjugate residual methods for multiple solution of systems of linear algebraic equations (SLAEs) with the same matrices but different successively determined right-hand sides are considered. In order to speed up the iterative solution of the second and subsequent SLAEs, deflation algorithms are applied. These algorithms use the direction vectors obtained in the course of solving the first system as the basis ones. Results of numerical experiments for model examples, illustrating the efficiency of the approaches under consideration, are provided.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05365-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (3), p.231-241
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2522123766
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Conjugates
Iterative methods
Iterative solution
Linear algebra
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix algebra
Matrix methods
Methods
Vectors (mathematics)
title Conjugate Direction Methods for Multiple Solution of Slaes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugate%20Direction%20Methods%20for%20Multiple%20Solution%20of%20Slaes&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Gurieva,%20Y.%20L.&rft.date=2021-06-01&rft.volume=255&rft.issue=3&rft.spage=231&rft.epage=241&rft.pages=231-241&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05365-8&rft_dat=%3Cgale_proqu%3EA726886611%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522123766&rft_id=info:pmid/&rft_galeid=A726886611&rfr_iscdi=true