Sub-Riemannian (2, 3, 5, 6)-Structures

We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2021, Vol.103 (1), p.61-65
Hauptverfasser: Sachkov, Yu. L., Sachkova, E. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 61
container_title Doklady. Mathematics
container_volume 103
creator Sachkov, Yu. L.
Sachkova, E. F.
description We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.
doi_str_mv 10.1134/S1064562421010105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522123756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522123756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8f7371138d4ad445386f01d921f8fc8b87fde88d48af5a065a68c1e333e2b5223</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FQRQazUw-Go-y-AULgtVzSNtEurjtmrQH_70pFTyIzGEGnvedGV5CToFdAXBxXQJTQioUCGwquUcWIDlQzRXupzlhOvFDchTjhjEhkbEFOS_Hir60bmu7rrVddoF5xvNM5pm6pOUQxnoYg4vH5MDbj-hOfvqSvN3fva4e6fr54Wl1u6Y1Bxio9gUv0j-6EbYRQnKtPIPmBsFrX-tKF75xOlFtvbRMSat0DY5z7rCSiHxJzua9u9B_ji4OZtOPoUsnDSYOyAupkgpmVR36GIPzZhfarQ1fBpiZ4jB_4kgenD0xabt3F343_2_6Bs95XDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522123756</pqid></control><display><type>article</type><title>Sub-Riemannian (2, 3, 5, 6)-Structures</title><source>SpringerNature Complete Journals</source><creator>Sachkov, Yu. L. ; Sachkova, E. F.</creator><creatorcontrib>Sachkov, Yu. L. ; Sachkova, E. F.</creatorcontrib><description>We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562421010105</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Canonical forms ; Control Theory ; Invariants ; Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2021, Vol.103 (1), p.61-65</ispartof><rights>The Author(s) 2021. ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 103, No. 1, pp. 61–65. © The Author(s), 2021. This article is an open access publication. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 496, No. 1, pp. 73–78.</rights><rights>The Author(s) 2021. ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 103, No. 1, pp. 61–65. © The Author(s), 2021. This article is an open access publication. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 496, No. 1, pp. 73–78. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-8f7371138d4ad445386f01d921f8fc8b87fde88d48af5a065a68c1e333e2b5223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562421010105$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562421010105$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sachkov, Yu. L.</creatorcontrib><creatorcontrib>Sachkova, E. F.</creatorcontrib><title>Sub-Riemannian (2, 3, 5, 6)-Structures</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.</description><subject>Canonical forms</subject><subject>Control Theory</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FQRQazUw-Go-y-AULgtVzSNtEurjtmrQH_70pFTyIzGEGnvedGV5CToFdAXBxXQJTQioUCGwquUcWIDlQzRXupzlhOvFDchTjhjEhkbEFOS_Hir60bmu7rrVddoF5xvNM5pm6pOUQxnoYg4vH5MDbj-hOfvqSvN3fva4e6fr54Wl1u6Y1Bxio9gUv0j-6EbYRQnKtPIPmBsFrX-tKF75xOlFtvbRMSat0DY5z7rCSiHxJzua9u9B_ji4OZtOPoUsnDSYOyAupkgpmVR36GIPzZhfarQ1fBpiZ4jB_4kgenD0xabt3F343_2_6Bs95XDQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sachkov, Yu. L.</creator><creator>Sachkova, E. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Sub-Riemannian (2, 3, 5, 6)-Structures</title><author>Sachkov, Yu. L. ; Sachkova, E. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8f7371138d4ad445386f01d921f8fc8b87fde88d48af5a065a68c1e333e2b5223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Canonical forms</topic><topic>Control Theory</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachkov, Yu. L.</creatorcontrib><creatorcontrib>Sachkova, E. F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sachkov, Yu. L.</au><au>Sachkova, E. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-Riemannian (2, 3, 5, 6)-Structures</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2021</date><risdate>2021</risdate><volume>103</volume><issue>1</issue><spage>61</spage><epage>65</epage><pages>61-65</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562421010105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2021, Vol.103 (1), p.61-65
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2522123756
source SpringerNature Complete Journals
subjects Canonical forms
Control Theory
Invariants
Mathematics
Mathematics and Statistics
title Sub-Riemannian (2, 3, 5, 6)-Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-Riemannian%20(2,%203,%205,%206)-Structures&rft.jtitle=Doklady.%20Mathematics&rft.au=Sachkov,%20Yu.%20L.&rft.date=2021&rft.volume=103&rft.issue=1&rft.spage=61&rft.epage=65&rft.pages=61-65&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562421010105&rft_dat=%3Cproquest_cross%3E2522123756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522123756&rft_id=info:pmid/&rfr_iscdi=true