Sub-Riemannian (2, 3, 5, 6)-Structures
We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An inv...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2021, Vol.103 (1), p.61-65 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Doklady. Mathematics |
container_volume | 103 |
creator | Sachkov, Yu. L. Sachkova, E. F. |
description | We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained. |
doi_str_mv | 10.1134/S1064562421010105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522123756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522123756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8f7371138d4ad445386f01d921f8fc8b87fde88d48af5a065a68c1e333e2b5223</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FQRQazUw-Go-y-AULgtVzSNtEurjtmrQH_70pFTyIzGEGnvedGV5CToFdAXBxXQJTQioUCGwquUcWIDlQzRXupzlhOvFDchTjhjEhkbEFOS_Hir60bmu7rrVddoF5xvNM5pm6pOUQxnoYg4vH5MDbj-hOfvqSvN3fva4e6fr54Wl1u6Y1Bxio9gUv0j-6EbYRQnKtPIPmBsFrX-tKF75xOlFtvbRMSat0DY5z7rCSiHxJzua9u9B_ji4OZtOPoUsnDSYOyAupkgpmVR36GIPzZhfarQ1fBpiZ4jB_4kgenD0xabt3F343_2_6Bs95XDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522123756</pqid></control><display><type>article</type><title>Sub-Riemannian (2, 3, 5, 6)-Structures</title><source>SpringerNature Complete Journals</source><creator>Sachkov, Yu. L. ; Sachkova, E. F.</creator><creatorcontrib>Sachkov, Yu. L. ; Sachkova, E. F.</creatorcontrib><description>We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562421010105</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Canonical forms ; Control Theory ; Invariants ; Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2021, Vol.103 (1), p.61-65</ispartof><rights>The Author(s) 2021. ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 103, No. 1, pp. 61–65. © The Author(s), 2021. This article is an open access publication. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 496, No. 1, pp. 73–78.</rights><rights>The Author(s) 2021. ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 103, No. 1, pp. 61–65. © The Author(s), 2021. This article is an open access publication. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 496, No. 1, pp. 73–78. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-8f7371138d4ad445386f01d921f8fc8b87fde88d48af5a065a68c1e333e2b5223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562421010105$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562421010105$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sachkov, Yu. L.</creatorcontrib><creatorcontrib>Sachkova, E. F.</creatorcontrib><title>Sub-Riemannian (2, 3, 5, 6)-Structures</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.</description><subject>Canonical forms</subject><subject>Control Theory</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FQRQazUw-Go-y-AULgtVzSNtEurjtmrQH_70pFTyIzGEGnvedGV5CToFdAXBxXQJTQioUCGwquUcWIDlQzRXupzlhOvFDchTjhjEhkbEFOS_Hir60bmu7rrVddoF5xvNM5pm6pOUQxnoYg4vH5MDbj-hOfvqSvN3fva4e6fr54Wl1u6Y1Bxio9gUv0j-6EbYRQnKtPIPmBsFrX-tKF75xOlFtvbRMSat0DY5z7rCSiHxJzua9u9B_ji4OZtOPoUsnDSYOyAupkgpmVR36GIPzZhfarQ1fBpiZ4jB_4kgenD0xabt3F343_2_6Bs95XDQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sachkov, Yu. L.</creator><creator>Sachkova, E. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Sub-Riemannian (2, 3, 5, 6)-Structures</title><author>Sachkov, Yu. L. ; Sachkova, E. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8f7371138d4ad445386f01d921f8fc8b87fde88d48af5a065a68c1e333e2b5223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Canonical forms</topic><topic>Control Theory</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachkov, Yu. L.</creatorcontrib><creatorcontrib>Sachkova, E. F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sachkov, Yu. L.</au><au>Sachkova, E. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-Riemannian (2, 3, 5, 6)-Structures</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2021</date><risdate>2021</risdate><volume>103</volume><issue>1</issue><spage>61</spage><epage>65</epage><pages>61-65</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562421010105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2021, Vol.103 (1), p.61-65 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2522123756 |
source | SpringerNature Complete Journals |
subjects | Canonical forms Control Theory Invariants Mathematics Mathematics and Statistics |
title | Sub-Riemannian (2, 3, 5, 6)-Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-Riemannian%20(2,%203,%205,%206)-Structures&rft.jtitle=Doklady.%20Mathematics&rft.au=Sachkov,%20Yu.%20L.&rft.date=2021&rft.volume=103&rft.issue=1&rft.spage=61&rft.epage=65&rft.pages=61-65&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562421010105&rft_dat=%3Cproquest_cross%3E2522123756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522123756&rft_id=info:pmid/&rfr_iscdi=true |