Relation Graphs of the Sedenion Algebra

Let S denote the algebra of sedenions and let Γ O (S) denote its orthogonality graph. One can observe that every pair of zero divisors in S generates a double hexagon in Γ O (S). The set of vertices of a double hexagon can be extended to a basis of S that has a convenient multiplication table. The s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-06, Vol.255 (3), p.254-270
Hauptverfasser: Guterman, A. E., Zhilina, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 3
container_start_page 254
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 255
creator Guterman, A. E.
Zhilina, S. A.
description Let S denote the algebra of sedenions and let Γ O (S) denote its orthogonality graph. One can observe that every pair of zero divisors in S generates a double hexagon in Γ O (S). The set of vertices of a double hexagon can be extended to a basis of S that has a convenient multiplication table. The set of vertices of an arbitrary connected component of Γ O (S) is described, and its diameter is found. Then, the bijection between the connected components of Γ O (S) and the lines in the imaginary part of the octonions is established. Finally, the commutativity graph of the sedenions is considered, and it is shown that all the elements whose imaginary part is a zero divisor belong to the same connected component, and its diameter lies in between 3 and 4.
doi_str_mv 10.1007/s10958-021-05367-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2522120431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726886613</galeid><sourcerecordid>A726886613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-d1e85f585896ea2a9d4e66ea4156994e8fa9e8084f7343def329369463fd29093</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhoMoWKt_wFPAg3jYuh_Zr2MpWgsFodXzsiazaUqa1N0U9N-7NUIpFNnDDMPz7MC8SXJL8IhgLB8DwZorhClBmDMhkThLBoRLhpTU_Dz2WFLEmMwuk6sQ1jhKQrFBcr-A2nZV26RTb7erkLYu7VaQLqGAZj8e1yV8eHudXDhbB7j5q8Pk_fnpbfKC5q_T2WQ8RzmTTKCCgOKOK660AEutLjIQscsIF1pnoJzVoLDKnGQZK8AxqpnQmWCuoBprNkzu-n-3vv3cQejMut35Jq40lFNKKM4YOVClrcFUjWs7b_NNFXIzllQoJQRhkUInqBIa8LZuG3BVHB_xoxN8fAVsqvyk8HAkRKaDr660uxDMbLk4ZmnP5r4NwYMzW19trP82BJt9hqbP0MQMzW-GRkSJ9VKIcFOCP1zjH-sHd6CY7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522120431</pqid></control><display><type>article</type><title>Relation Graphs of the Sedenion Algebra</title><source>Springer Nature - Complete Springer Journals</source><creator>Guterman, A. E. ; Zhilina, S. A.</creator><creatorcontrib>Guterman, A. E. ; Zhilina, S. A.</creatorcontrib><description>Let S denote the algebra of sedenions and let Γ O (S) denote its orthogonality graph. One can observe that every pair of zero divisors in S generates a double hexagon in Γ O (S). The set of vertices of a double hexagon can be extended to a basis of S that has a convenient multiplication table. The set of vertices of an arbitrary connected component of Γ O (S) is described, and its diameter is found. Then, the bijection between the connected components of Γ O (S) and the lines in the imaginary part of the octonions is established. Finally, the commutativity graph of the sedenions is considered, and it is shown that all the elements whose imaginary part is a zero divisor belong to the same connected component, and its diameter lies in between 3 and 4.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05367-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Apexes ; Commutativity ; Mathematics ; Mathematics and Statistics ; Multiplication ; Orthogonality</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (3), p.254-270</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-d1e85f585896ea2a9d4e66ea4156994e8fa9e8084f7343def329369463fd29093</citedby><cites>FETCH-LOGICAL-c3736-d1e85f585896ea2a9d4e66ea4156994e8fa9e8084f7343def329369463fd29093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05367-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05367-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guterman, A. E.</creatorcontrib><creatorcontrib>Zhilina, S. A.</creatorcontrib><title>Relation Graphs of the Sedenion Algebra</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Let S denote the algebra of sedenions and let Γ O (S) denote its orthogonality graph. One can observe that every pair of zero divisors in S generates a double hexagon in Γ O (S). The set of vertices of a double hexagon can be extended to a basis of S that has a convenient multiplication table. The set of vertices of an arbitrary connected component of Γ O (S) is described, and its diameter is found. Then, the bijection between the connected components of Γ O (S) and the lines in the imaginary part of the octonions is established. Finally, the commutativity graph of the sedenions is considered, and it is shown that all the elements whose imaginary part is a zero divisor belong to the same connected component, and its diameter lies in between 3 and 4.</description><subject>Algebra</subject><subject>Apexes</subject><subject>Commutativity</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiplication</subject><subject>Orthogonality</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1Lw0AQhoMoWKt_wFPAg3jYuh_Zr2MpWgsFodXzsiazaUqa1N0U9N-7NUIpFNnDDMPz7MC8SXJL8IhgLB8DwZorhClBmDMhkThLBoRLhpTU_Dz2WFLEmMwuk6sQ1jhKQrFBcr-A2nZV26RTb7erkLYu7VaQLqGAZj8e1yV8eHudXDhbB7j5q8Pk_fnpbfKC5q_T2WQ8RzmTTKCCgOKOK660AEutLjIQscsIF1pnoJzVoLDKnGQZK8AxqpnQmWCuoBprNkzu-n-3vv3cQejMut35Jq40lFNKKM4YOVClrcFUjWs7b_NNFXIzllQoJQRhkUInqBIa8LZuG3BVHB_xoxN8fAVsqvyk8HAkRKaDr660uxDMbLk4ZmnP5r4NwYMzW19trP82BJt9hqbP0MQMzW-GRkSJ9VKIcFOCP1zjH-sHd6CY7w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Guterman, A. E.</creator><creator>Zhilina, S. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210601</creationdate><title>Relation Graphs of the Sedenion Algebra</title><author>Guterman, A. E. ; Zhilina, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-d1e85f585896ea2a9d4e66ea4156994e8fa9e8084f7343def329369463fd29093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Apexes</topic><topic>Commutativity</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiplication</topic><topic>Orthogonality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guterman, A. E.</creatorcontrib><creatorcontrib>Zhilina, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guterman, A. E.</au><au>Zhilina, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation Graphs of the Sedenion Algebra</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>255</volume><issue>3</issue><spage>254</spage><epage>270</epage><pages>254-270</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Let S denote the algebra of sedenions and let Γ O (S) denote its orthogonality graph. One can observe that every pair of zero divisors in S generates a double hexagon in Γ O (S). The set of vertices of a double hexagon can be extended to a basis of S that has a convenient multiplication table. The set of vertices of an arbitrary connected component of Γ O (S) is described, and its diameter is found. Then, the bijection between the connected components of Γ O (S) and the lines in the imaginary part of the octonions is established. Finally, the commutativity graph of the sedenions is considered, and it is shown that all the elements whose imaginary part is a zero divisor belong to the same connected component, and its diameter lies in between 3 and 4.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05367-6</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-06, Vol.255 (3), p.254-270
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2522120431
source Springer Nature - Complete Springer Journals
subjects Algebra
Apexes
Commutativity
Mathematics
Mathematics and Statistics
Multiplication
Orthogonality
title Relation Graphs of the Sedenion Algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20Graphs%20of%20the%20Sedenion%20Algebra&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Guterman,%20A.%20E.&rft.date=2021-06-01&rft.volume=255&rft.issue=3&rft.spage=254&rft.epage=270&rft.pages=254-270&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05367-6&rft_dat=%3Cgale_proqu%3EA726886613%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522120431&rft_id=info:pmid/&rft_galeid=A726886613&rfr_iscdi=true