Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment
In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h −1 ), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a...
Gespeichert in:
Veröffentlicht in: | Journal of porous materials 2021-06, Vol.28 (3), p.727-739 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 3 |
container_start_page | 727 |
container_title | Journal of porous materials |
container_volume | 28 |
creator | Breitenbach, Stefan Unterweger, Christoph Lumetzberger, Alexander Duchoslav, Jiri Stifter, David Hassel, Achim Walter Fürst, Christian |
description | In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h
−1
), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m
2
g
−1
. The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis. |
doi_str_mv | 10.1007/s10934-020-01026-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522120412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522120412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhiMEEqXwAkyWmAPHl9zYEOImVWIBVsuJj1NXbRLsFBEmHoCBZ-RJME0RG5Oto-_7ffxH0TGFUwqQnXkKBRcxMIiBAktjsRNNaJLxWOSJ2A13nkPMGBP70YH3CwAo8iybRB9P1letx6_3z1J51KRrXbv2pFKubBtibInOnxO76lz7YpuaDBaXmqhmJL3tB9LPg1LPSdv1dmXfVG-D2Zowx23O7zCEVOg9KQei0dt6g-Frh86usOkPoz2jlh6Ptuc0ery-eri8jWf3N3eXF7O4EgB9TFEZbTKlMp1mqNJKCV2youIARkGZqqowLOEpCp3kFLjRGbICWA4pL5FqPo1Oxtywz_MafS8X7do14UnJEsYoA0FZoNhIVeGf3qGRXVhTuUFSkD-ty7F1GVqXm9alCBIfJR_gpkb3F_2P9Q09JYpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522120412</pqid></control><display><type>article</type><title>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</title><source>Springer Nature - Complete Springer Journals</source><creator>Breitenbach, Stefan ; Unterweger, Christoph ; Lumetzberger, Alexander ; Duchoslav, Jiri ; Stifter, David ; Hassel, Achim Walter ; Fürst, Christian</creator><creatorcontrib>Breitenbach, Stefan ; Unterweger, Christoph ; Lumetzberger, Alexander ; Duchoslav, Jiri ; Stifter, David ; Hassel, Achim Walter ; Fürst, Christian</creatorcontrib><description>In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h
−1
), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m
2
g
−1
. The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis.</description><identifier>ISSN: 1380-2224</identifier><identifier>EISSN: 1573-4854</identifier><identifier>DOI: 10.1007/s10934-020-01026-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Carbon fibers ; Carbonization ; Catalysis ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Design of experiments ; Heating rate ; Optimization ; Physical Chemistry ; Porosity ; Raman spectroscopy ; Specific surface ; Statistical models ; Surface area</subject><ispartof>Journal of porous materials, 2021-06, Vol.28 (3), p.727-739</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</citedby><cites>FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</cites><orcidid>0000-0003-4689-9560 ; 0000-0002-9816-6740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10934-020-01026-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10934-020-01026-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Breitenbach, Stefan</creatorcontrib><creatorcontrib>Unterweger, Christoph</creatorcontrib><creatorcontrib>Lumetzberger, Alexander</creatorcontrib><creatorcontrib>Duchoslav, Jiri</creatorcontrib><creatorcontrib>Stifter, David</creatorcontrib><creatorcontrib>Hassel, Achim Walter</creatorcontrib><creatorcontrib>Fürst, Christian</creatorcontrib><title>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</title><title>Journal of porous materials</title><addtitle>J Porous Mater</addtitle><description>In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h
−1
), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m
2
g
−1
. The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis.</description><subject>Activated carbon</subject><subject>Carbon fibers</subject><subject>Carbonization</subject><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Design of experiments</subject><subject>Heating rate</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Porosity</subject><subject>Raman spectroscopy</subject><subject>Specific surface</subject><subject>Statistical models</subject><subject>Surface area</subject><issn>1380-2224</issn><issn>1573-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOwzAUhiMEEqXwAkyWmAPHl9zYEOImVWIBVsuJj1NXbRLsFBEmHoCBZ-RJME0RG5Oto-_7ffxH0TGFUwqQnXkKBRcxMIiBAktjsRNNaJLxWOSJ2A13nkPMGBP70YH3CwAo8iybRB9P1letx6_3z1J51KRrXbv2pFKubBtibInOnxO76lz7YpuaDBaXmqhmJL3tB9LPg1LPSdv1dmXfVG-D2Zowx23O7zCEVOg9KQei0dt6g-Frh86usOkPoz2jlh6Ptuc0ery-eri8jWf3N3eXF7O4EgB9TFEZbTKlMp1mqNJKCV2youIARkGZqqowLOEpCp3kFLjRGbICWA4pL5FqPo1Oxtywz_MafS8X7do14UnJEsYoA0FZoNhIVeGf3qGRXVhTuUFSkD-ty7F1GVqXm9alCBIfJR_gpkb3F_2P9Q09JYpU</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Breitenbach, Stefan</creator><creator>Unterweger, Christoph</creator><creator>Lumetzberger, Alexander</creator><creator>Duchoslav, Jiri</creator><creator>Stifter, David</creator><creator>Hassel, Achim Walter</creator><creator>Fürst, Christian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4689-9560</orcidid><orcidid>https://orcid.org/0000-0002-9816-6740</orcidid></search><sort><creationdate>20210601</creationdate><title>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</title><author>Breitenbach, Stefan ; Unterweger, Christoph ; Lumetzberger, Alexander ; Duchoslav, Jiri ; Stifter, David ; Hassel, Achim Walter ; Fürst, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Carbon fibers</topic><topic>Carbonization</topic><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Design of experiments</topic><topic>Heating rate</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Porosity</topic><topic>Raman spectroscopy</topic><topic>Specific surface</topic><topic>Statistical models</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breitenbach, Stefan</creatorcontrib><creatorcontrib>Unterweger, Christoph</creatorcontrib><creatorcontrib>Lumetzberger, Alexander</creatorcontrib><creatorcontrib>Duchoslav, Jiri</creatorcontrib><creatorcontrib>Stifter, David</creatorcontrib><creatorcontrib>Hassel, Achim Walter</creatorcontrib><creatorcontrib>Fürst, Christian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of porous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breitenbach, Stefan</au><au>Unterweger, Christoph</au><au>Lumetzberger, Alexander</au><au>Duchoslav, Jiri</au><au>Stifter, David</au><au>Hassel, Achim Walter</au><au>Fürst, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</atitle><jtitle>Journal of porous materials</jtitle><stitle>J Porous Mater</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><spage>727</spage><epage>739</epage><pages>727-739</pages><issn>1380-2224</issn><eissn>1573-4854</eissn><abstract>In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h
−1
), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m
2
g
−1
. The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10934-020-01026-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4689-9560</orcidid><orcidid>https://orcid.org/0000-0002-9816-6740</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-2224 |
ispartof | Journal of porous materials, 2021-06, Vol.28 (3), p.727-739 |
issn | 1380-2224 1573-4854 |
language | eng |
recordid | cdi_proquest_journals_2522120412 |
source | Springer Nature - Complete Springer Journals |
subjects | Activated carbon Carbon fibers Carbonization Catalysis Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Design of experiments Heating rate Optimization Physical Chemistry Porosity Raman spectroscopy Specific surface Statistical models Surface area |
title | Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscose%E2%80%90based%20porous%20carbon%20fibers:%20improving%20yield%20and%20porosity%20through%20optimization%20of%20the%20carbonization%20process%20by%20design%20of%20experiment&rft.jtitle=Journal%20of%20porous%20materials&rft.au=Breitenbach,%20Stefan&rft.date=2021-06-01&rft.volume=28&rft.issue=3&rft.spage=727&rft.epage=739&rft.pages=727-739&rft.issn=1380-2224&rft.eissn=1573-4854&rft_id=info:doi/10.1007/s10934-020-01026-4&rft_dat=%3Cproquest_cross%3E2522120412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522120412&rft_id=info:pmid/&rfr_iscdi=true |