Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment

In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h −1 ), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of porous materials 2021-06, Vol.28 (3), p.727-739
Hauptverfasser: Breitenbach, Stefan, Unterweger, Christoph, Lumetzberger, Alexander, Duchoslav, Jiri, Stifter, David, Hassel, Achim Walter, Fürst, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 3
container_start_page 727
container_title Journal of porous materials
container_volume 28
creator Breitenbach, Stefan
Unterweger, Christoph
Lumetzberger, Alexander
Duchoslav, Jiri
Stifter, David
Hassel, Achim Walter
Fürst, Christian
description In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h −1 ), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m 2 g −1 . The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis.
doi_str_mv 10.1007/s10934-020-01026-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522120412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522120412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhiMEEqXwAkyWmAPHl9zYEOImVWIBVsuJj1NXbRLsFBEmHoCBZ-RJME0RG5Oto-_7ffxH0TGFUwqQnXkKBRcxMIiBAktjsRNNaJLxWOSJ2A13nkPMGBP70YH3CwAo8iybRB9P1letx6_3z1J51KRrXbv2pFKubBtibInOnxO76lz7YpuaDBaXmqhmJL3tB9LPg1LPSdv1dmXfVG-D2Zowx23O7zCEVOg9KQei0dt6g-Frh86usOkPoz2jlh6Ptuc0ery-eri8jWf3N3eXF7O4EgB9TFEZbTKlMp1mqNJKCV2youIARkGZqqowLOEpCp3kFLjRGbICWA4pL5FqPo1Oxtywz_MafS8X7do14UnJEsYoA0FZoNhIVeGf3qGRXVhTuUFSkD-ty7F1GVqXm9alCBIfJR_gpkb3F_2P9Q09JYpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522120412</pqid></control><display><type>article</type><title>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</title><source>Springer Nature - Complete Springer Journals</source><creator>Breitenbach, Stefan ; Unterweger, Christoph ; Lumetzberger, Alexander ; Duchoslav, Jiri ; Stifter, David ; Hassel, Achim Walter ; Fürst, Christian</creator><creatorcontrib>Breitenbach, Stefan ; Unterweger, Christoph ; Lumetzberger, Alexander ; Duchoslav, Jiri ; Stifter, David ; Hassel, Achim Walter ; Fürst, Christian</creatorcontrib><description>In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h −1 ), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m 2 g −1 . The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis.</description><identifier>ISSN: 1380-2224</identifier><identifier>EISSN: 1573-4854</identifier><identifier>DOI: 10.1007/s10934-020-01026-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Carbon fibers ; Carbonization ; Catalysis ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Design of experiments ; Heating rate ; Optimization ; Physical Chemistry ; Porosity ; Raman spectroscopy ; Specific surface ; Statistical models ; Surface area</subject><ispartof>Journal of porous materials, 2021-06, Vol.28 (3), p.727-739</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</citedby><cites>FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</cites><orcidid>0000-0003-4689-9560 ; 0000-0002-9816-6740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10934-020-01026-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10934-020-01026-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Breitenbach, Stefan</creatorcontrib><creatorcontrib>Unterweger, Christoph</creatorcontrib><creatorcontrib>Lumetzberger, Alexander</creatorcontrib><creatorcontrib>Duchoslav, Jiri</creatorcontrib><creatorcontrib>Stifter, David</creatorcontrib><creatorcontrib>Hassel, Achim Walter</creatorcontrib><creatorcontrib>Fürst, Christian</creatorcontrib><title>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</title><title>Journal of porous materials</title><addtitle>J Porous Mater</addtitle><description>In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h −1 ), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m 2 g −1 . The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis.</description><subject>Activated carbon</subject><subject>Carbon fibers</subject><subject>Carbonization</subject><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Design of experiments</subject><subject>Heating rate</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Porosity</subject><subject>Raman spectroscopy</subject><subject>Specific surface</subject><subject>Statistical models</subject><subject>Surface area</subject><issn>1380-2224</issn><issn>1573-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOwzAUhiMEEqXwAkyWmAPHl9zYEOImVWIBVsuJj1NXbRLsFBEmHoCBZ-RJME0RG5Oto-_7ffxH0TGFUwqQnXkKBRcxMIiBAktjsRNNaJLxWOSJ2A13nkPMGBP70YH3CwAo8iybRB9P1letx6_3z1J51KRrXbv2pFKubBtibInOnxO76lz7YpuaDBaXmqhmJL3tB9LPg1LPSdv1dmXfVG-D2Zowx23O7zCEVOg9KQei0dt6g-Frh86usOkPoz2jlh6Ptuc0ery-eri8jWf3N3eXF7O4EgB9TFEZbTKlMp1mqNJKCV2youIARkGZqqowLOEpCp3kFLjRGbICWA4pL5FqPo1Oxtywz_MafS8X7do14UnJEsYoA0FZoNhIVeGf3qGRXVhTuUFSkD-ty7F1GVqXm9alCBIfJR_gpkb3F_2P9Q09JYpU</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Breitenbach, Stefan</creator><creator>Unterweger, Christoph</creator><creator>Lumetzberger, Alexander</creator><creator>Duchoslav, Jiri</creator><creator>Stifter, David</creator><creator>Hassel, Achim Walter</creator><creator>Fürst, Christian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4689-9560</orcidid><orcidid>https://orcid.org/0000-0002-9816-6740</orcidid></search><sort><creationdate>20210601</creationdate><title>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</title><author>Breitenbach, Stefan ; Unterweger, Christoph ; Lumetzberger, Alexander ; Duchoslav, Jiri ; Stifter, David ; Hassel, Achim Walter ; Fürst, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1eafdf7aa7d67ea6ca4db29c300fa0b6ac9f2536e4d58103fd7e29028063be1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Carbon fibers</topic><topic>Carbonization</topic><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Design of experiments</topic><topic>Heating rate</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Porosity</topic><topic>Raman spectroscopy</topic><topic>Specific surface</topic><topic>Statistical models</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breitenbach, Stefan</creatorcontrib><creatorcontrib>Unterweger, Christoph</creatorcontrib><creatorcontrib>Lumetzberger, Alexander</creatorcontrib><creatorcontrib>Duchoslav, Jiri</creatorcontrib><creatorcontrib>Stifter, David</creatorcontrib><creatorcontrib>Hassel, Achim Walter</creatorcontrib><creatorcontrib>Fürst, Christian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of porous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breitenbach, Stefan</au><au>Unterweger, Christoph</au><au>Lumetzberger, Alexander</au><au>Duchoslav, Jiri</au><au>Stifter, David</au><au>Hassel, Achim Walter</au><au>Fürst, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment</atitle><jtitle>Journal of porous materials</jtitle><stitle>J Porous Mater</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><spage>727</spage><epage>739</epage><pages>727-739</pages><issn>1380-2224</issn><eissn>1573-4854</eissn><abstract>In this study, the production of porous carbon fibers from viscose fibers was investigated. The effects of final carbonization temperature (600–1000 °C) and heating rate (6–600 °C h −1 ), which determine the carbonization process, on carbon yield, and specific surface area were investigated using a central composite design. The statistical models found were then used to optimize both the yield and the porosity of the carbonized fibers, which are the most important factors for further use as precursors for activated carbon fibers. Despite the contrary effects, porous carbon fibers with a yield of 21.2% could be produced, which at the same time have a specific surface area of 175 m 2 g −1 . The fibers produced were also characterized by SEM, FTIR and Raman spectroscopy, XRD and CHNS analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10934-020-01026-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4689-9560</orcidid><orcidid>https://orcid.org/0000-0002-9816-6740</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-2224
ispartof Journal of porous materials, 2021-06, Vol.28 (3), p.727-739
issn 1380-2224
1573-4854
language eng
recordid cdi_proquest_journals_2522120412
source Springer Nature - Complete Springer Journals
subjects Activated carbon
Carbon fibers
Carbonization
Catalysis
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Design of experiments
Heating rate
Optimization
Physical Chemistry
Porosity
Raman spectroscopy
Specific surface
Statistical models
Surface area
title Viscose‐based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscose%E2%80%90based%20porous%20carbon%20fibers:%20improving%20yield%20and%20porosity%20through%20optimization%20of%20the%20carbonization%20process%20by%20design%20of%20experiment&rft.jtitle=Journal%20of%20porous%20materials&rft.au=Breitenbach,%20Stefan&rft.date=2021-06-01&rft.volume=28&rft.issue=3&rft.spage=727&rft.epage=739&rft.pages=727-739&rft.issn=1380-2224&rft.eissn=1573-4854&rft_id=info:doi/10.1007/s10934-020-01026-4&rft_dat=%3Cproquest_cross%3E2522120412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522120412&rft_id=info:pmid/&rfr_iscdi=true