Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous AgAu Nanosphere Chain Assemblies

Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-05, Vol.9 (9), p.n/a
Hauptverfasser: Schletz, Daniel, Schultz, Johannes, Potapov, Pavel L., Steiner, Anja Maria, Krehl, Jonas, König, Tobias A. F., Mayer, Martin, Lubk, Axel, Fery, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced optical materials
container_volume 9
creator Schletz, Daniel
Schultz, Johannes
Potapov, Pavel L.
Steiner, Anja Maria
Krehl, Jonas
König, Tobias A. F.
Mayer, Martin
Lubk, Axel
Fery, Andreas
description Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous AgAu nanoparticle chains are reported. Wrinkled templates are used for directed self‐assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state‐of‐the‐art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. Heterogeneous chains of plasmonic particles are promising structures for engineering waveguiding properties of plasmonic structures. In this work, heterogeneous particle chains composed of gold and silver spheres are stochastically assembled, virtually generating every possible combination up to a length of 17. Their plasmonic properties are investigated by electron energy loss spectroscopy and boundary element simulations.
doi_str_mv 10.1002/adom.202001983
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2522031255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522031255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-b1307b1ddf43f428884e2c63f6229e90dc154e3a364e0be85153c03a5343f4f53</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRiMEElXplrUl1in-iZtkGYVCKxXoAtaWk0xSV4md2inQ83AQjsQVSFQE7FjNLN77RvN53iXBU4IxvZaFaaYUU4xJHLETb0RJzH2CQ3L6Zz_3Js5tcQ_hkMVBOPJ287e2NqpTukKpaTKlZWesyh3qDFrqF3CdqmQHaF1L1xitcrS2pgXbKXBIabSADqypQIPZO5RUn-8fyR49SG1cuwELKN3IHkucgyare-nCOytl7WDyPcfe8-38KV34q8e7ZZqs_DygjPkZYTjMSFGUASsDGkVRADSfsXJGaQwxLnLCA2CSzQLAGUSccJZjJjkb-JKzsXd1zG2t2e37P8TW7K3uTwrKKcWMUD5Q0yOVW-OchVK0VjXSHgTBYmhWDM2Kn2Z7IT4Kr6qGwz-0SG4e73_dL2O_ftc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522031255</pqid></control><display><type>article</type><title>Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous AgAu Nanosphere Chain Assemblies</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Schletz, Daniel ; Schultz, Johannes ; Potapov, Pavel L. ; Steiner, Anja Maria ; Krehl, Jonas ; König, Tobias A. F. ; Mayer, Martin ; Lubk, Axel ; Fery, Andreas</creator><creatorcontrib>Schletz, Daniel ; Schultz, Johannes ; Potapov, Pavel L. ; Steiner, Anja Maria ; Krehl, Jonas ; König, Tobias A. F. ; Mayer, Martin ; Lubk, Axel ; Fery, Andreas</creatorcontrib><description>Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous AgAu nanoparticle chains are reported. Wrinkled templates are used for directed self‐assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state‐of‐the‐art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. Heterogeneous chains of plasmonic particles are promising structures for engineering waveguiding properties of plasmonic structures. In this work, heterogeneous particle chains composed of gold and silver spheres are stochastically assembled, virtually generating every possible combination up to a length of 17. Their plasmonic properties are investigated by electron energy loss spectroscopy and boundary element simulations.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001983</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Assemblies ; Assembling ; boundary element method ; Chains ; Combinatorial analysis ; Electron energy loss spectroscopy ; Energy dissipation ; Gold ; Materials science ; Nanoparticles ; Nanospheres ; Optics ; plasmonic polymers ; Plasmonics ; Scanning transmission electron microscopy ; Silver ; stochastic assembly ; template‐assisted self‐assembly</subject><ispartof>Advanced optical materials, 2021-05, Vol.9 (9), p.n/a</ispartof><rights>2021 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-b1307b1ddf43f428884e2c63f6229e90dc154e3a364e0be85153c03a5343f4f53</citedby><cites>FETCH-LOGICAL-c4233-b1307b1ddf43f428884e2c63f6229e90dc154e3a364e0be85153c03a5343f4f53</cites><orcidid>0000-0002-8852-8752 ; 0000-0003-4013-1892 ; 0000-0001-6692-3762 ; 0000-0001-5649-0983 ; 0000-0003-1881-2018 ; 0000-0002-2899-6378 ; 0000-0003-2698-8806 ; 0000-0002-5420-5461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001983$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001983$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schletz, Daniel</creatorcontrib><creatorcontrib>Schultz, Johannes</creatorcontrib><creatorcontrib>Potapov, Pavel L.</creatorcontrib><creatorcontrib>Steiner, Anja Maria</creatorcontrib><creatorcontrib>Krehl, Jonas</creatorcontrib><creatorcontrib>König, Tobias A. F.</creatorcontrib><creatorcontrib>Mayer, Martin</creatorcontrib><creatorcontrib>Lubk, Axel</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><title>Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous AgAu Nanosphere Chain Assemblies</title><title>Advanced optical materials</title><description>Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous AgAu nanoparticle chains are reported. Wrinkled templates are used for directed self‐assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state‐of‐the‐art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. Heterogeneous chains of plasmonic particles are promising structures for engineering waveguiding properties of plasmonic structures. In this work, heterogeneous particle chains composed of gold and silver spheres are stochastically assembled, virtually generating every possible combination up to a length of 17. Their plasmonic properties are investigated by electron energy loss spectroscopy and boundary element simulations.</description><subject>Assemblies</subject><subject>Assembling</subject><subject>boundary element method</subject><subject>Chains</subject><subject>Combinatorial analysis</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Gold</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Optics</subject><subject>plasmonic polymers</subject><subject>Plasmonics</subject><subject>Scanning transmission electron microscopy</subject><subject>Silver</subject><subject>stochastic assembly</subject><subject>template‐assisted self‐assembly</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1OwzAQRiMEElXplrUl1in-iZtkGYVCKxXoAtaWk0xSV4md2inQ83AQjsQVSFQE7FjNLN77RvN53iXBU4IxvZaFaaYUU4xJHLETb0RJzH2CQ3L6Zz_3Js5tcQ_hkMVBOPJ287e2NqpTukKpaTKlZWesyh3qDFrqF3CdqmQHaF1L1xitcrS2pgXbKXBIabSADqypQIPZO5RUn-8fyR49SG1cuwELKN3IHkucgyare-nCOytl7WDyPcfe8-38KV34q8e7ZZqs_DygjPkZYTjMSFGUASsDGkVRADSfsXJGaQwxLnLCA2CSzQLAGUSccJZjJjkb-JKzsXd1zG2t2e37P8TW7K3uTwrKKcWMUD5Q0yOVW-OchVK0VjXSHgTBYmhWDM2Kn2Z7IT4Kr6qGwz-0SG4e73_dL2O_ftc</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Schletz, Daniel</creator><creator>Schultz, Johannes</creator><creator>Potapov, Pavel L.</creator><creator>Steiner, Anja Maria</creator><creator>Krehl, Jonas</creator><creator>König, Tobias A. F.</creator><creator>Mayer, Martin</creator><creator>Lubk, Axel</creator><creator>Fery, Andreas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8852-8752</orcidid><orcidid>https://orcid.org/0000-0003-4013-1892</orcidid><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0001-5649-0983</orcidid><orcidid>https://orcid.org/0000-0003-1881-2018</orcidid><orcidid>https://orcid.org/0000-0002-2899-6378</orcidid><orcidid>https://orcid.org/0000-0003-2698-8806</orcidid><orcidid>https://orcid.org/0000-0002-5420-5461</orcidid></search><sort><creationdate>20210501</creationdate><title>Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous AgAu Nanosphere Chain Assemblies</title><author>Schletz, Daniel ; Schultz, Johannes ; Potapov, Pavel L. ; Steiner, Anja Maria ; Krehl, Jonas ; König, Tobias A. F. ; Mayer, Martin ; Lubk, Axel ; Fery, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-b1307b1ddf43f428884e2c63f6229e90dc154e3a364e0be85153c03a5343f4f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assemblies</topic><topic>Assembling</topic><topic>boundary element method</topic><topic>Chains</topic><topic>Combinatorial analysis</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Gold</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Optics</topic><topic>plasmonic polymers</topic><topic>Plasmonics</topic><topic>Scanning transmission electron microscopy</topic><topic>Silver</topic><topic>stochastic assembly</topic><topic>template‐assisted self‐assembly</topic><toplevel>online_resources</toplevel><creatorcontrib>Schletz, Daniel</creatorcontrib><creatorcontrib>Schultz, Johannes</creatorcontrib><creatorcontrib>Potapov, Pavel L.</creatorcontrib><creatorcontrib>Steiner, Anja Maria</creatorcontrib><creatorcontrib>Krehl, Jonas</creatorcontrib><creatorcontrib>König, Tobias A. F.</creatorcontrib><creatorcontrib>Mayer, Martin</creatorcontrib><creatorcontrib>Lubk, Axel</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schletz, Daniel</au><au>Schultz, Johannes</au><au>Potapov, Pavel L.</au><au>Steiner, Anja Maria</au><au>Krehl, Jonas</au><au>König, Tobias A. F.</au><au>Mayer, Martin</au><au>Lubk, Axel</au><au>Fery, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous AgAu Nanosphere Chain Assemblies</atitle><jtitle>Advanced optical materials</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>9</volume><issue>9</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Chains of coupled metallic nanoparticles are of special interest for plasmonic applications because they can sustain highly dispersive plasmon bands, allowing strong ballistic plasmon wave transport. Whereas early studies focused on homogeneous particle chains exhibiting only one dominant band, heterogeneous assemblies consisting of different nanoparticle species came into the spotlight recently. Their increased configuration space principally allows engineering multiple bands, bandgaps, or topological states. Simultaneously, the challenge of the precise arrangement of nanoparticles, including their distances and geometric patterns, as well as the precise characterization of the plasmonics in these systems, persists. Here, the surface plasmon resonances in heterogeneous AgAu nanoparticle chains are reported. Wrinkled templates are used for directed self‐assembly of monodisperse gold and silver nanospheres as chains, which allows assembling statistical combinations of more than 109 particles. To reveal the spatial and spectral distribution of the plasmonic response, state‐of‐the‐art scanning transmission electron microscopy coupled with electron energy loss spectroscopy accompanied by boundary element simulations is used. A variety of modes in the heterogeneous chains are found, ranging from localized surface plasmon modes occurring in single gold or silver spheres, respectively, to modes that result from the hybridization of the single particles. This approach opens a novel avenue toward combinatorial studies of plasmonic properties in heterosystems. Heterogeneous chains of plasmonic particles are promising structures for engineering waveguiding properties of plasmonic structures. In this work, heterogeneous particle chains composed of gold and silver spheres are stochastically assembled, virtually generating every possible combination up to a length of 17. Their plasmonic properties are investigated by electron energy loss spectroscopy and boundary element simulations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001983</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8852-8752</orcidid><orcidid>https://orcid.org/0000-0003-4013-1892</orcidid><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0001-5649-0983</orcidid><orcidid>https://orcid.org/0000-0003-1881-2018</orcidid><orcidid>https://orcid.org/0000-0002-2899-6378</orcidid><orcidid>https://orcid.org/0000-0003-2698-8806</orcidid><orcidid>https://orcid.org/0000-0002-5420-5461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-05, Vol.9 (9), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2522031255
source Wiley Online Library - AutoHoldings Journals
subjects Assemblies
Assembling
boundary element method
Chains
Combinatorial analysis
Electron energy loss spectroscopy
Energy dissipation
Gold
Materials science
Nanoparticles
Nanospheres
Optics
plasmonic polymers
Plasmonics
Scanning transmission electron microscopy
Silver
stochastic assembly
template‐assisted self‐assembly
title Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous AgAu Nanosphere Chain Assemblies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Combinatorics%20to%20Investigate%20Plasmonic%20Properties%20in%20Heterogeneous%20Ag%EF%A3%BFAu%20Nanosphere%20Chain%20Assemblies&rft.jtitle=Advanced%20optical%20materials&rft.au=Schletz,%20Daniel&rft.date=2021-05-01&rft.volume=9&rft.issue=9&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001983&rft_dat=%3Cproquest_cross%3E2522031255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522031255&rft_id=info:pmid/&rfr_iscdi=true