Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation
Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack gr...
Gespeichert in:
Veröffentlicht in: | Materials and corrosion 2021-05, Vol.72 (5), p.879-887 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 887 |
---|---|
container_issue | 5 |
container_start_page | 879 |
container_title | Materials and corrosion |
container_volume | 72 |
creator | Lu, Wei Ma, Chuanping Gou, Guoqing Fu, Zhenghong Sun, Weiguang Che, Xiaoli Chen, Hui Gao, Wei |
description | Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth.
Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air. |
doi_str_mv | 10.1002/maco.202012123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521996650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521996650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</originalsourceid><addsrcrecordid>eNqFkL9u2zAQxokiAeI4XTMT6CyHR1J_OBpG0hRw4wzuLNDU0aYjiSol1fDWR-icx-uTlK6Ddsx0h7vvuw_3I-QW2AwY43eNNn7GGWfAgYsPZAIph0RCnl2QCVMyT1KA_Ipc9_2eMQAl5IS8LnwIvne-pVYPbjsiNUGbF9oF3-ltHMXNBnf6h_OBekvn-ROD598_f60l1fXYuHZsYlP7Iz1gXWFF9961Q09t8A3due0uavsO42II2rV0bCsMNugGqbYDBgqzgjaurk9JLw31HYa_sTfk0uq6x49vdUq-PdyvF4_JcvX5y2K-TIxIpUiMMUpyxHwjTAGKWSUEt0pikUJmbbExSjBuKqmNkQJNziotTMQCwAqhhZiST-e78eXvI_ZDufdjaGNkySNBpbIsZVE1O6tMxNUHtGUXXKPDsQRWnviXJ_7lP_7RoM6Gg6vx-I66_DpfrP57_wAS0I1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521996650</pqid></control><display><type>article</type><title>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</title><source>Wiley Online Library</source><creator>Lu, Wei ; Ma, Chuanping ; Gou, Guoqing ; Fu, Zhenghong ; Sun, Weiguang ; Che, Xiaoli ; Chen, Hui ; Gao, Wei</creator><creatorcontrib>Lu, Wei ; Ma, Chuanping ; Gou, Guoqing ; Fu, Zhenghong ; Sun, Weiguang ; Che, Xiaoli ; Chen, Hui ; Gao, Wei</creatorcontrib><description>Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth.
Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.202012123</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>1.8 million km operation ; A7N01P‐T4 aluminum alloy welded joints ; Aluminum alloys ; Aluminum base alloys ; Anodic dissolution ; Base metal ; Corrosion ; Corrosion fatigue ; Corrosion rate ; Corrosion resistance ; Crack propagation ; Dissolution ; Electron backscatter diffraction ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; Fracture surfaces ; Gas welding ; Heat affected zone ; Metal fatigue ; Microscopy ; Optical microscopy ; Plastic deformation ; Propagation ; Rare gases ; Sodium chloride ; Stress corrosion cracking ; Weld metal ; Welded joints</subject><ispartof>Materials and corrosion, 2021-05, Vol.72 (5), p.879-887</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</citedby><cites>FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</cites><orcidid>0000-0002-0966-8088 ; 0000-0002-7616-965X ; 0000-0003-1559-3059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.202012123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.202012123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Ma, Chuanping</creatorcontrib><creatorcontrib>Gou, Guoqing</creatorcontrib><creatorcontrib>Fu, Zhenghong</creatorcontrib><creatorcontrib>Sun, Weiguang</creatorcontrib><creatorcontrib>Che, Xiaoli</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><title>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</title><title>Materials and corrosion</title><description>Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth.
Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air.</description><subject>1.8 million km operation</subject><subject>A7N01P‐T4 aluminum alloy welded joints</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Anodic dissolution</subject><subject>Base metal</subject><subject>Corrosion</subject><subject>Corrosion fatigue</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Crack propagation</subject><subject>Dissolution</subject><subject>Electron backscatter diffraction</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Gas welding</subject><subject>Heat affected zone</subject><subject>Metal fatigue</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Plastic deformation</subject><subject>Propagation</subject><subject>Rare gases</subject><subject>Sodium chloride</subject><subject>Stress corrosion cracking</subject><subject>Weld metal</subject><subject>Welded joints</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL9u2zAQxokiAeI4XTMT6CyHR1J_OBpG0hRw4wzuLNDU0aYjiSol1fDWR-icx-uTlK6Ddsx0h7vvuw_3I-QW2AwY43eNNn7GGWfAgYsPZAIph0RCnl2QCVMyT1KA_Ipc9_2eMQAl5IS8LnwIvne-pVYPbjsiNUGbF9oF3-ltHMXNBnf6h_OBekvn-ROD598_f60l1fXYuHZsYlP7Iz1gXWFF9961Q09t8A3due0uavsO42II2rV0bCsMNugGqbYDBgqzgjaurk9JLw31HYa_sTfk0uq6x49vdUq-PdyvF4_JcvX5y2K-TIxIpUiMMUpyxHwjTAGKWSUEt0pikUJmbbExSjBuKqmNkQJNziotTMQCwAqhhZiST-e78eXvI_ZDufdjaGNkySNBpbIsZVE1O6tMxNUHtGUXXKPDsQRWnviXJ_7lP_7RoM6Gg6vx-I66_DpfrP57_wAS0I1c</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Lu, Wei</creator><creator>Ma, Chuanping</creator><creator>Gou, Guoqing</creator><creator>Fu, Zhenghong</creator><creator>Sun, Weiguang</creator><creator>Che, Xiaoli</creator><creator>Chen, Hui</creator><creator>Gao, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0966-8088</orcidid><orcidid>https://orcid.org/0000-0002-7616-965X</orcidid><orcidid>https://orcid.org/0000-0003-1559-3059</orcidid></search><sort><creationdate>202105</creationdate><title>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</title><author>Lu, Wei ; Ma, Chuanping ; Gou, Guoqing ; Fu, Zhenghong ; Sun, Weiguang ; Che, Xiaoli ; Chen, Hui ; Gao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1.8 million km operation</topic><topic>A7N01P‐T4 aluminum alloy welded joints</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Anodic dissolution</topic><topic>Base metal</topic><topic>Corrosion</topic><topic>Corrosion fatigue</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Crack propagation</topic><topic>Dissolution</topic><topic>Electron backscatter diffraction</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Gas welding</topic><topic>Heat affected zone</topic><topic>Metal fatigue</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Plastic deformation</topic><topic>Propagation</topic><topic>Rare gases</topic><topic>Sodium chloride</topic><topic>Stress corrosion cracking</topic><topic>Weld metal</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Ma, Chuanping</creatorcontrib><creatorcontrib>Gou, Guoqing</creatorcontrib><creatorcontrib>Fu, Zhenghong</creatorcontrib><creatorcontrib>Sun, Weiguang</creatorcontrib><creatorcontrib>Che, Xiaoli</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wei</au><au>Ma, Chuanping</au><au>Gou, Guoqing</au><au>Fu, Zhenghong</au><au>Sun, Weiguang</au><au>Che, Xiaoli</au><au>Chen, Hui</au><au>Gao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</atitle><jtitle>Materials and corrosion</jtitle><date>2021-05</date><risdate>2021</risdate><volume>72</volume><issue>5</issue><spage>879</spage><epage>887</epage><pages>879-887</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><abstract>Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth.
Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/maco.202012123</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0966-8088</orcidid><orcidid>https://orcid.org/0000-0002-7616-965X</orcidid><orcidid>https://orcid.org/0000-0003-1559-3059</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-5117 |
ispartof | Materials and corrosion, 2021-05, Vol.72 (5), p.879-887 |
issn | 0947-5117 1521-4176 |
language | eng |
recordid | cdi_proquest_journals_2521996650 |
source | Wiley Online Library |
subjects | 1.8 million km operation A7N01P‐T4 aluminum alloy welded joints Aluminum alloys Aluminum base alloys Anodic dissolution Base metal Corrosion Corrosion fatigue Corrosion rate Corrosion resistance Crack propagation Dissolution Electron backscatter diffraction Fatigue cracks Fatigue failure Fracture mechanics Fracture surfaces Gas welding Heat affected zone Metal fatigue Microscopy Optical microscopy Plastic deformation Propagation Rare gases Sodium chloride Stress corrosion cracking Weld metal Welded joints |
title | Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20fatigue%20crack%20propagation%20behavior%20of%20A7N01P%E2%80%90T4%20aluminum%20alloy%20welded%20joints%20from%20high%E2%80%90speed%20train%20underframe%20after%201.8%20million%20km%20operation&rft.jtitle=Materials%20and%20corrosion&rft.au=Lu,%20Wei&rft.date=2021-05&rft.volume=72&rft.issue=5&rft.spage=879&rft.epage=887&rft.pages=879-887&rft.issn=0947-5117&rft.eissn=1521-4176&rft_id=info:doi/10.1002/maco.202012123&rft_dat=%3Cproquest_cross%3E2521996650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521996650&rft_id=info:pmid/&rfr_iscdi=true |