Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation

Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and corrosion 2021-05, Vol.72 (5), p.879-887
Hauptverfasser: Lu, Wei, Ma, Chuanping, Gou, Guoqing, Fu, Zhenghong, Sun, Weiguang, Che, Xiaoli, Chen, Hui, Gao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887
container_issue 5
container_start_page 879
container_title Materials and corrosion
container_volume 72
creator Lu, Wei
Ma, Chuanping
Gou, Guoqing
Fu, Zhenghong
Sun, Weiguang
Che, Xiaoli
Chen, Hui
Gao, Wei
description Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth. Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air.
doi_str_mv 10.1002/maco.202012123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521996650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521996650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</originalsourceid><addsrcrecordid>eNqFkL9u2zAQxokiAeI4XTMT6CyHR1J_OBpG0hRw4wzuLNDU0aYjiSol1fDWR-icx-uTlK6Ddsx0h7vvuw_3I-QW2AwY43eNNn7GGWfAgYsPZAIph0RCnl2QCVMyT1KA_Ipc9_2eMQAl5IS8LnwIvne-pVYPbjsiNUGbF9oF3-ltHMXNBnf6h_OBekvn-ROD598_f60l1fXYuHZsYlP7Iz1gXWFF9961Q09t8A3due0uavsO42II2rV0bCsMNugGqbYDBgqzgjaurk9JLw31HYa_sTfk0uq6x49vdUq-PdyvF4_JcvX5y2K-TIxIpUiMMUpyxHwjTAGKWSUEt0pikUJmbbExSjBuKqmNkQJNziotTMQCwAqhhZiST-e78eXvI_ZDufdjaGNkySNBpbIsZVE1O6tMxNUHtGUXXKPDsQRWnviXJ_7lP_7RoM6Gg6vx-I66_DpfrP57_wAS0I1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521996650</pqid></control><display><type>article</type><title>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</title><source>Wiley Online Library</source><creator>Lu, Wei ; Ma, Chuanping ; Gou, Guoqing ; Fu, Zhenghong ; Sun, Weiguang ; Che, Xiaoli ; Chen, Hui ; Gao, Wei</creator><creatorcontrib>Lu, Wei ; Ma, Chuanping ; Gou, Guoqing ; Fu, Zhenghong ; Sun, Weiguang ; Che, Xiaoli ; Chen, Hui ; Gao, Wei</creatorcontrib><description>Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth. Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.202012123</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>1.8 million km operation ; A7N01P‐T4 aluminum alloy welded joints ; Aluminum alloys ; Aluminum base alloys ; Anodic dissolution ; Base metal ; Corrosion ; Corrosion fatigue ; Corrosion rate ; Corrosion resistance ; Crack propagation ; Dissolution ; Electron backscatter diffraction ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; Fracture surfaces ; Gas welding ; Heat affected zone ; Metal fatigue ; Microscopy ; Optical microscopy ; Plastic deformation ; Propagation ; Rare gases ; Sodium chloride ; Stress corrosion cracking ; Weld metal ; Welded joints</subject><ispartof>Materials and corrosion, 2021-05, Vol.72 (5), p.879-887</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</citedby><cites>FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</cites><orcidid>0000-0002-0966-8088 ; 0000-0002-7616-965X ; 0000-0003-1559-3059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.202012123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.202012123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Ma, Chuanping</creatorcontrib><creatorcontrib>Gou, Guoqing</creatorcontrib><creatorcontrib>Fu, Zhenghong</creatorcontrib><creatorcontrib>Sun, Weiguang</creatorcontrib><creatorcontrib>Che, Xiaoli</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><title>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</title><title>Materials and corrosion</title><description>Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth. Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air.</description><subject>1.8 million km operation</subject><subject>A7N01P‐T4 aluminum alloy welded joints</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Anodic dissolution</subject><subject>Base metal</subject><subject>Corrosion</subject><subject>Corrosion fatigue</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Crack propagation</subject><subject>Dissolution</subject><subject>Electron backscatter diffraction</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Gas welding</subject><subject>Heat affected zone</subject><subject>Metal fatigue</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Plastic deformation</subject><subject>Propagation</subject><subject>Rare gases</subject><subject>Sodium chloride</subject><subject>Stress corrosion cracking</subject><subject>Weld metal</subject><subject>Welded joints</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL9u2zAQxokiAeI4XTMT6CyHR1J_OBpG0hRw4wzuLNDU0aYjiSol1fDWR-icx-uTlK6Ddsx0h7vvuw_3I-QW2AwY43eNNn7GGWfAgYsPZAIph0RCnl2QCVMyT1KA_Ipc9_2eMQAl5IS8LnwIvne-pVYPbjsiNUGbF9oF3-ltHMXNBnf6h_OBekvn-ROD598_f60l1fXYuHZsYlP7Iz1gXWFF9961Q09t8A3due0uavsO42II2rV0bCsMNugGqbYDBgqzgjaurk9JLw31HYa_sTfk0uq6x49vdUq-PdyvF4_JcvX5y2K-TIxIpUiMMUpyxHwjTAGKWSUEt0pikUJmbbExSjBuKqmNkQJNziotTMQCwAqhhZiST-e78eXvI_ZDufdjaGNkySNBpbIsZVE1O6tMxNUHtGUXXKPDsQRWnviXJ_7lP_7RoM6Gg6vx-I66_DpfrP57_wAS0I1c</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Lu, Wei</creator><creator>Ma, Chuanping</creator><creator>Gou, Guoqing</creator><creator>Fu, Zhenghong</creator><creator>Sun, Weiguang</creator><creator>Che, Xiaoli</creator><creator>Chen, Hui</creator><creator>Gao, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0966-8088</orcidid><orcidid>https://orcid.org/0000-0002-7616-965X</orcidid><orcidid>https://orcid.org/0000-0003-1559-3059</orcidid></search><sort><creationdate>202105</creationdate><title>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</title><author>Lu, Wei ; Ma, Chuanping ; Gou, Guoqing ; Fu, Zhenghong ; Sun, Weiguang ; Che, Xiaoli ; Chen, Hui ; Gao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3543-ccc942ee7b3c8190f9332f94e8516ff8bc9302cd4acc43ec70da3c41711083a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1.8 million km operation</topic><topic>A7N01P‐T4 aluminum alloy welded joints</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Anodic dissolution</topic><topic>Base metal</topic><topic>Corrosion</topic><topic>Corrosion fatigue</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Crack propagation</topic><topic>Dissolution</topic><topic>Electron backscatter diffraction</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Gas welding</topic><topic>Heat affected zone</topic><topic>Metal fatigue</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Plastic deformation</topic><topic>Propagation</topic><topic>Rare gases</topic><topic>Sodium chloride</topic><topic>Stress corrosion cracking</topic><topic>Weld metal</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Ma, Chuanping</creatorcontrib><creatorcontrib>Gou, Guoqing</creatorcontrib><creatorcontrib>Fu, Zhenghong</creatorcontrib><creatorcontrib>Sun, Weiguang</creatorcontrib><creatorcontrib>Che, Xiaoli</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wei</au><au>Ma, Chuanping</au><au>Gou, Guoqing</au><au>Fu, Zhenghong</au><au>Sun, Weiguang</au><au>Che, Xiaoli</au><au>Chen, Hui</au><au>Gao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation</atitle><jtitle>Materials and corrosion</jtitle><date>2021-05</date><risdate>2021</risdate><volume>72</volume><issue>5</issue><spage>879</spage><epage>887</epage><pages>879-887</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><abstract>Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe after 1.8 million km operation was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate of an A7N01P‐T4 welded joint in a 3.5 wt% NaCl solution is higher than that in air. Furthermore, the corrosion fatigue crack growth rate is noted to be the fastest in the heat‐affected zone, followed by the base metal, whereas it is the slowest in the weld metal, which is consistent with the corrosion resistance of the A7N01P‐T4 joints. The second phase is observed to exhibit a significant influence on the corrosion fatigue crack propagation path. The cracks are noted to grow toward the soft orientation and have obvious plastic deformation during the propagation process, which indicates that the anodic dissolution is the main cause of the corrosion fatigue crack growth. Using the potentiodynamic polarization analysis, the fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy metal inert gas welded joints cut from a high‐speed train underframe was studied in air and in a 3.5 wt% NaCl solution. The fracture surface and crack growth path were analyzed using optical microscopy, scanning electron microscopy, and electron backscattered diffraction. The results reveal that the corrosion fatigue crack growth rate in a 3.5 wt% NaCl solution is higher than that in air.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/maco.202012123</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0966-8088</orcidid><orcidid>https://orcid.org/0000-0002-7616-965X</orcidid><orcidid>https://orcid.org/0000-0003-1559-3059</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-5117
ispartof Materials and corrosion, 2021-05, Vol.72 (5), p.879-887
issn 0947-5117
1521-4176
language eng
recordid cdi_proquest_journals_2521996650
source Wiley Online Library
subjects 1.8 million km operation
A7N01P‐T4 aluminum alloy welded joints
Aluminum alloys
Aluminum base alloys
Anodic dissolution
Base metal
Corrosion
Corrosion fatigue
Corrosion rate
Corrosion resistance
Crack propagation
Dissolution
Electron backscatter diffraction
Fatigue cracks
Fatigue failure
Fracture mechanics
Fracture surfaces
Gas welding
Heat affected zone
Metal fatigue
Microscopy
Optical microscopy
Plastic deformation
Propagation
Rare gases
Sodium chloride
Stress corrosion cracking
Weld metal
Welded joints
title Corrosion fatigue crack propagation behavior of A7N01P‐T4 aluminum alloy welded joints from high‐speed train underframe after 1.8 million km operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20fatigue%20crack%20propagation%20behavior%20of%20A7N01P%E2%80%90T4%20aluminum%20alloy%20welded%20joints%20from%20high%E2%80%90speed%20train%20underframe%20after%201.8%20million%20km%20operation&rft.jtitle=Materials%20and%20corrosion&rft.au=Lu,%20Wei&rft.date=2021-05&rft.volume=72&rft.issue=5&rft.spage=879&rft.epage=887&rft.pages=879-887&rft.issn=0947-5117&rft.eissn=1521-4176&rft_id=info:doi/10.1002/maco.202012123&rft_dat=%3Cproquest_cross%3E2521996650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521996650&rft_id=info:pmid/&rfr_iscdi=true