Weighted integral solvers for elastic scattering by open arcs in two dimensions
We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2021-06, Vol.122 (11), p.2733-2750 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2750 |
---|---|
container_issue | 11 |
container_start_page | 2733 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Bruno, Oscar P. Xu, Liwei Yin, Tao |
description | We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology. |
doi_str_mv | 10.1002/nme.6639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521907025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521907025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnWSbZHOUUj-g2oviMaTZ2Zqy3dQktfTfu7VePc3APDMDLyHXDEYMgN91axxJWeoTMmCgVQEc1CkZ9CNdCF2xc3KR0gqAMQHlgMw_0C8_M9bUdxmX0bY0hfYbY6JNiBRbm7J3NDmbM0bfLeliT8MGO2qjS_0SzbtAa7_GLvnQpUty1tg24dVfHZL3h-nb5KmYzR-fJ_ezwpVc6aKu3LiSVS214Ba0aBpdYam1dnWDwF0FQpV8LKFRYzy0NTpALSW3emGVLIfk5nh3E8PXFlM2q7CNXf_ScMGZBgVc9Or2qFwMKUVszCb6tY17w8Ac4jJ9XOYQV0-LI935Fvf_OvP6Mv31P1elayk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521907025</pqid></control><display><type>article</type><title>Weighted integral solvers for elastic scattering by open arcs in two dimensions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bruno, Oscar P. ; Xu, Liwei ; Yin, Tao</creator><creatorcontrib>Bruno, Oscar P. ; Xu, Liwei ; Yin, Tao</creatorcontrib><description>We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6639</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Boundary conditions ; Calderón relation ; Dirichlet problem ; Elastic scattering ; elasticity ; Integrals ; Linear algebra ; open arc ; Operators (mathematics) ; Quadratures ; second‐kind integral solver ; Solvers</subject><ispartof>International journal for numerical methods in engineering, 2021-06, Vol.122 (11), p.2733-2750</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</citedby><cites>FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</cites><orcidid>0000-0001-8369-3014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6639$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6639$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bruno, Oscar P.</creatorcontrib><creatorcontrib>Xu, Liwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><title>Weighted integral solvers for elastic scattering by open arcs in two dimensions</title><title>International journal for numerical methods in engineering</title><description>We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Calderón relation</subject><subject>Dirichlet problem</subject><subject>Elastic scattering</subject><subject>elasticity</subject><subject>Integrals</subject><subject>Linear algebra</subject><subject>open arc</subject><subject>Operators (mathematics)</subject><subject>Quadratures</subject><subject>second‐kind integral solver</subject><subject>Solvers</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnWSbZHOUUj-g2oviMaTZ2Zqy3dQktfTfu7VePc3APDMDLyHXDEYMgN91axxJWeoTMmCgVQEc1CkZ9CNdCF2xc3KR0gqAMQHlgMw_0C8_M9bUdxmX0bY0hfYbY6JNiBRbm7J3NDmbM0bfLeliT8MGO2qjS_0SzbtAa7_GLvnQpUty1tg24dVfHZL3h-nb5KmYzR-fJ_ezwpVc6aKu3LiSVS214Ba0aBpdYam1dnWDwF0FQpV8LKFRYzy0NTpALSW3emGVLIfk5nh3E8PXFlM2q7CNXf_ScMGZBgVc9Or2qFwMKUVszCb6tY17w8Ac4jJ9XOYQV0-LI935Fvf_OvP6Mv31P1elayk</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Bruno, Oscar P.</creator><creator>Xu, Liwei</creator><creator>Yin, Tao</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8369-3014</orcidid></search><sort><creationdate>20210615</creationdate><title>Weighted integral solvers for elastic scattering by open arcs in two dimensions</title><author>Bruno, Oscar P. ; Xu, Liwei ; Yin, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Calderón relation</topic><topic>Dirichlet problem</topic><topic>Elastic scattering</topic><topic>elasticity</topic><topic>Integrals</topic><topic>Linear algebra</topic><topic>open arc</topic><topic>Operators (mathematics)</topic><topic>Quadratures</topic><topic>second‐kind integral solver</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruno, Oscar P.</creatorcontrib><creatorcontrib>Xu, Liwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruno, Oscar P.</au><au>Xu, Liwei</au><au>Yin, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted integral solvers for elastic scattering by open arcs in two dimensions</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>122</volume><issue>11</issue><spage>2733</spage><epage>2750</epage><pages>2733-2750</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6639</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8369-3014</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-06, Vol.122 (11), p.2733-2750 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2521907025 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Boundary conditions Calderón relation Dirichlet problem Elastic scattering elasticity Integrals Linear algebra open arc Operators (mathematics) Quadratures second‐kind integral solver Solvers |
title | Weighted integral solvers for elastic scattering by open arcs in two dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20integral%20solvers%20for%20elastic%20scattering%20by%20open%20arcs%20in%20two%20dimensions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Bruno,%20Oscar%20P.&rft.date=2021-06-15&rft.volume=122&rft.issue=11&rft.spage=2733&rft.epage=2750&rft.pages=2733-2750&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6639&rft_dat=%3Cproquest_cross%3E2521907025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521907025&rft_id=info:pmid/&rfr_iscdi=true |