Weighted integral solvers for elastic scattering by open arcs in two dimensions

We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2021-06, Vol.122 (11), p.2733-2750
Hauptverfasser: Bruno, Oscar P., Xu, Liwei, Yin, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2750
container_issue 11
container_start_page 2733
container_title International journal for numerical methods in engineering
container_volume 122
creator Bruno, Oscar P.
Xu, Liwei
Yin, Tao
description We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology.
doi_str_mv 10.1002/nme.6639
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521907025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521907025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnWSbZHOUUj-g2oviMaTZ2Zqy3dQktfTfu7VePc3APDMDLyHXDEYMgN91axxJWeoTMmCgVQEc1CkZ9CNdCF2xc3KR0gqAMQHlgMw_0C8_M9bUdxmX0bY0hfYbY6JNiBRbm7J3NDmbM0bfLeliT8MGO2qjS_0SzbtAa7_GLvnQpUty1tg24dVfHZL3h-nb5KmYzR-fJ_ezwpVc6aKu3LiSVS214Ba0aBpdYam1dnWDwF0FQpV8LKFRYzy0NTpALSW3emGVLIfk5nh3E8PXFlM2q7CNXf_ScMGZBgVc9Or2qFwMKUVszCb6tY17w8Ac4jJ9XOYQV0-LI935Fvf_OvP6Mv31P1elayk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521907025</pqid></control><display><type>article</type><title>Weighted integral solvers for elastic scattering by open arcs in two dimensions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bruno, Oscar P. ; Xu, Liwei ; Yin, Tao</creator><creatorcontrib>Bruno, Oscar P. ; Xu, Liwei ; Yin, Tao</creatorcontrib><description>We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6639</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Boundary conditions ; Calderón relation ; Dirichlet problem ; Elastic scattering ; elasticity ; Integrals ; Linear algebra ; open arc ; Operators (mathematics) ; Quadratures ; second‐kind integral solver ; Solvers</subject><ispartof>International journal for numerical methods in engineering, 2021-06, Vol.122 (11), p.2733-2750</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</citedby><cites>FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</cites><orcidid>0000-0001-8369-3014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6639$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6639$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bruno, Oscar P.</creatorcontrib><creatorcontrib>Xu, Liwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><title>Weighted integral solvers for elastic scattering by open arcs in two dimensions</title><title>International journal for numerical methods in engineering</title><description>We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Calderón relation</subject><subject>Dirichlet problem</subject><subject>Elastic scattering</subject><subject>elasticity</subject><subject>Integrals</subject><subject>Linear algebra</subject><subject>open arc</subject><subject>Operators (mathematics)</subject><subject>Quadratures</subject><subject>second‐kind integral solver</subject><subject>Solvers</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxsnWSbZHOUUj-g2oviMaTZ2Zqy3dQktfTfu7VePc3APDMDLyHXDEYMgN91axxJWeoTMmCgVQEc1CkZ9CNdCF2xc3KR0gqAMQHlgMw_0C8_M9bUdxmX0bY0hfYbY6JNiBRbm7J3NDmbM0bfLeliT8MGO2qjS_0SzbtAa7_GLvnQpUty1tg24dVfHZL3h-nb5KmYzR-fJ_ezwpVc6aKu3LiSVS214Ba0aBpdYam1dnWDwF0FQpV8LKFRYzy0NTpALSW3emGVLIfk5nh3E8PXFlM2q7CNXf_ScMGZBgVc9Or2qFwMKUVszCb6tY17w8Ac4jJ9XOYQV0-LI935Fvf_OvP6Mv31P1elayk</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Bruno, Oscar P.</creator><creator>Xu, Liwei</creator><creator>Yin, Tao</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8369-3014</orcidid></search><sort><creationdate>20210615</creationdate><title>Weighted integral solvers for elastic scattering by open arcs in two dimensions</title><author>Bruno, Oscar P. ; Xu, Liwei ; Yin, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-d8c4868d6952a095ff98e3999cdfe02c805732460f74e5732dec0e9662a9ba763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Calderón relation</topic><topic>Dirichlet problem</topic><topic>Elastic scattering</topic><topic>elasticity</topic><topic>Integrals</topic><topic>Linear algebra</topic><topic>open arc</topic><topic>Operators (mathematics)</topic><topic>Quadratures</topic><topic>second‐kind integral solver</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruno, Oscar P.</creatorcontrib><creatorcontrib>Xu, Liwei</creatorcontrib><creatorcontrib>Yin, Tao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruno, Oscar P.</au><au>Xu, Liwei</au><au>Yin, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted integral solvers for elastic scattering by open arcs in two dimensions</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>122</volume><issue>11</issue><spage>2733</spage><epage>2750</epage><pages>2733-2750</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>We present new methodologies for the numerical solution of problems of elastic scattering by open arcs in two dimensions. The algorithms utilize weighted versions of the classical elastic integral operators associated with Dirichlet and Neumann boundary conditions, where the integral weight accounts for (and regularizes) the singularity of the integral‐equation solutions at the open‐arc endpoints. Crucially, the method also incorporates a certain “open‐arc elastic Calderón relation” introduced in this article, whose validity is demonstrated on the basis of numerical experiments, but whose rigorous mathematical proof is left for future work. (In fact, the aforementioned open‐arc elastic Calderón relation generalizes a corresponding elastic Calderón relation for closed surfaces, which is also introduced in this article, and for which a rigorous proof is included.) Using the open‐surface Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov‐subspace linear algebra solver GMRES, the proposed overall open‐arc elastic solver produces results of high accuracy in small number of iterations, for both low and high frequencies. A variety of numerical examples in this article demonstrate the accuracy and efficiency of the proposed methodology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6639</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8369-3014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2021-06, Vol.122 (11), p.2733-2750
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2521907025
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Boundary conditions
Calderón relation
Dirichlet problem
Elastic scattering
elasticity
Integrals
Linear algebra
open arc
Operators (mathematics)
Quadratures
second‐kind integral solver
Solvers
title Weighted integral solvers for elastic scattering by open arcs in two dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20integral%20solvers%20for%20elastic%20scattering%20by%20open%20arcs%20in%20two%20dimensions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Bruno,%20Oscar%20P.&rft.date=2021-06-15&rft.volume=122&rft.issue=11&rft.spage=2733&rft.epage=2750&rft.pages=2733-2750&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6639&rft_dat=%3Cproquest_cross%3E2521907025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521907025&rft_id=info:pmid/&rfr_iscdi=true