In-situ identification of material batches using machine learning for machining operations

In subtractive manufacturing, differences in machinability among batches of the same material can be observed. Ignoring these deviations can potentially reduce product quality and increase manufacturing costs. To consider the influence of the material batch in process optimization models, the batch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2021-06, Vol.32 (5), p.1485-1495
Hauptverfasser: Lutz, Benjamin, Kisskalt, Dominik, Mayr, Andreas, Regulin, Daniel, Pantano, Matteo, Franke, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1495
container_issue 5
container_start_page 1485
container_title Journal of intelligent manufacturing
container_volume 32
creator Lutz, Benjamin
Kisskalt, Dominik
Mayr, Andreas
Regulin, Daniel
Pantano, Matteo
Franke, Jörg
description In subtractive manufacturing, differences in machinability among batches of the same material can be observed. Ignoring these deviations can potentially reduce product quality and increase manufacturing costs. To consider the influence of the material batch in process optimization models, the batch needs to be efficiently identified. Thus, a smart service is proposed for in-situ material batch identification. This service is driven by a supervised machine learning model, which analyzes the signals of the machine’s control, especially torque data, for batch classification. The proposed approach is validated by cutting experiments with five different batches of the same specified material at various cutting conditions. Using this data, multiple classification models are trained and optimized. It is shown that the investigated batches can be correctly identified with close to 90% prediction accuracy using machine learning. Out of all the investigated algorithms, the best results are achieved using a Support Vector Machine with 89.0% prediction accuracy for individual batches and 98.9% while combining batches of similar machinability.
doi_str_mv 10.1007/s10845-020-01718-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521817279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521817279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-66ca534d8c76e8216d8dfa1f4399d211d3194da3406d647a80e0ed3e6a7e3efc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_QBAGXI_mNUlmKcVHoeBGN25CTO60KW1Sk8zCf--0U9CVq3vv4XznwkHomuA7grG8zwQr3tSY4hoTSVTNTtCENJLWivDm9M9-ji5yXmOMWyXIBH3MQ5196SvvIBTfeWuKj6GKXbU1BZI3m-rTFLuCXPXZh-Ug25UPUG3ApLAXupiO4v6KO0iHiHyJzjqzyXB1nFP0_vT4NnupF6_P89nDoracqVILYU3DuFNWClCUCKdcZ0jHWds6SohjpOXOMI6FE1wahQGDYyCMBAadZVN0O-buUvzqIRe9jn0Kw0tNG0oUkVS2g4uOLptizgk6vUt-a9K3JljvO9Rjh3roUB861GyA2AjlwRyWkH6j_6VuRgpsDD7r_cglJk2VErxlP2BYf0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521817279</pqid></control><display><type>article</type><title>In-situ identification of material batches using machine learning for machining operations</title><source>SpringerLink Journals</source><creator>Lutz, Benjamin ; Kisskalt, Dominik ; Mayr, Andreas ; Regulin, Daniel ; Pantano, Matteo ; Franke, Jörg</creator><creatorcontrib>Lutz, Benjamin ; Kisskalt, Dominik ; Mayr, Andreas ; Regulin, Daniel ; Pantano, Matteo ; Franke, Jörg</creatorcontrib><description>In subtractive manufacturing, differences in machinability among batches of the same material can be observed. Ignoring these deviations can potentially reduce product quality and increase manufacturing costs. To consider the influence of the material batch in process optimization models, the batch needs to be efficiently identified. Thus, a smart service is proposed for in-situ material batch identification. This service is driven by a supervised machine learning model, which analyzes the signals of the machine’s control, especially torque data, for batch classification. The proposed approach is validated by cutting experiments with five different batches of the same specified material at various cutting conditions. Using this data, multiple classification models are trained and optimized. It is shown that the investigated batches can be correctly identified with close to 90% prediction accuracy using machine learning. Out of all the investigated algorithms, the best results are achieved using a Support Vector Machine with 89.0% prediction accuracy for individual batches and 98.9% while combining batches of similar machinability.</description><identifier>ISSN: 1572-8145</identifier><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-020-01718-3</identifier><language>eng</language><publisher>New York, NY: Springer US</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Business and Management ; Classification ; Control ; Machinability ; Machine learning ; Machines ; Machining ; Manufacturing ; Material batches ; Mechatronics ; Optimization ; Process monitoring ; Processes ; Production ; Production costs ; Robotics ; Support vector machines</subject><ispartof>Journal of intelligent manufacturing, 2021-06, Vol.32 (5), p.1485-1495</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-66ca534d8c76e8216d8dfa1f4399d211d3194da3406d647a80e0ed3e6a7e3efc3</citedby><cites>FETCH-LOGICAL-c438t-66ca534d8c76e8216d8dfa1f4399d211d3194da3406d647a80e0ed3e6a7e3efc3</cites><orcidid>0000-0002-4319-4701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-020-01718-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-020-01718-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lutz, Benjamin</creatorcontrib><creatorcontrib>Kisskalt, Dominik</creatorcontrib><creatorcontrib>Mayr, Andreas</creatorcontrib><creatorcontrib>Regulin, Daniel</creatorcontrib><creatorcontrib>Pantano, Matteo</creatorcontrib><creatorcontrib>Franke, Jörg</creatorcontrib><title>In-situ identification of material batches using machine learning for machining operations</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>In subtractive manufacturing, differences in machinability among batches of the same material can be observed. Ignoring these deviations can potentially reduce product quality and increase manufacturing costs. To consider the influence of the material batch in process optimization models, the batch needs to be efficiently identified. Thus, a smart service is proposed for in-situ material batch identification. This service is driven by a supervised machine learning model, which analyzes the signals of the machine’s control, especially torque data, for batch classification. The proposed approach is validated by cutting experiments with five different batches of the same specified material at various cutting conditions. Using this data, multiple classification models are trained and optimized. It is shown that the investigated batches can be correctly identified with close to 90% prediction accuracy using machine learning. Out of all the investigated algorithms, the best results are achieved using a Support Vector Machine with 89.0% prediction accuracy for individual batches and 98.9% while combining batches of similar machinability.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Business and Management</subject><subject>Classification</subject><subject>Control</subject><subject>Machinability</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Machining</subject><subject>Manufacturing</subject><subject>Material batches</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Process monitoring</subject><subject>Processes</subject><subject>Production</subject><subject>Production costs</subject><subject>Robotics</subject><subject>Support vector machines</subject><issn>1572-8145</issn><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_QBAGXI_mNUlmKcVHoeBGN25CTO60KW1Sk8zCf--0U9CVq3vv4XznwkHomuA7grG8zwQr3tSY4hoTSVTNTtCENJLWivDm9M9-ji5yXmOMWyXIBH3MQ5196SvvIBTfeWuKj6GKXbU1BZI3m-rTFLuCXPXZh-Ug25UPUG3ApLAXupiO4v6KO0iHiHyJzjqzyXB1nFP0_vT4NnupF6_P89nDoracqVILYU3DuFNWClCUCKdcZ0jHWds6SohjpOXOMI6FE1wahQGDYyCMBAadZVN0O-buUvzqIRe9jn0Kw0tNG0oUkVS2g4uOLptizgk6vUt-a9K3JljvO9Rjh3roUB861GyA2AjlwRyWkH6j_6VuRgpsDD7r_cglJk2VErxlP2BYf0U</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lutz, Benjamin</creator><creator>Kisskalt, Dominik</creator><creator>Mayr, Andreas</creator><creator>Regulin, Daniel</creator><creator>Pantano, Matteo</creator><creator>Franke, Jörg</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OT2</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4319-4701</orcidid></search><sort><creationdate>20210601</creationdate><title>In-situ identification of material batches using machine learning for machining operations</title><author>Lutz, Benjamin ; Kisskalt, Dominik ; Mayr, Andreas ; Regulin, Daniel ; Pantano, Matteo ; Franke, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-66ca534d8c76e8216d8dfa1f4399d211d3194da3406d647a80e0ed3e6a7e3efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Business and Management</topic><topic>Classification</topic><topic>Control</topic><topic>Machinability</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Machining</topic><topic>Manufacturing</topic><topic>Material batches</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Process monitoring</topic><topic>Processes</topic><topic>Production</topic><topic>Production costs</topic><topic>Robotics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutz, Benjamin</creatorcontrib><creatorcontrib>Kisskalt, Dominik</creatorcontrib><creatorcontrib>Mayr, Andreas</creatorcontrib><creatorcontrib>Regulin, Daniel</creatorcontrib><creatorcontrib>Pantano, Matteo</creatorcontrib><creatorcontrib>Franke, Jörg</creatorcontrib><collection>EconStor</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutz, Benjamin</au><au>Kisskalt, Dominik</au><au>Mayr, Andreas</au><au>Regulin, Daniel</au><au>Pantano, Matteo</au><au>Franke, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ identification of material batches using machine learning for machining operations</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>32</volume><issue>5</issue><spage>1485</spage><epage>1495</epage><pages>1485-1495</pages><issn>1572-8145</issn><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>In subtractive manufacturing, differences in machinability among batches of the same material can be observed. Ignoring these deviations can potentially reduce product quality and increase manufacturing costs. To consider the influence of the material batch in process optimization models, the batch needs to be efficiently identified. Thus, a smart service is proposed for in-situ material batch identification. This service is driven by a supervised machine learning model, which analyzes the signals of the machine’s control, especially torque data, for batch classification. The proposed approach is validated by cutting experiments with five different batches of the same specified material at various cutting conditions. Using this data, multiple classification models are trained and optimized. It is shown that the investigated batches can be correctly identified with close to 90% prediction accuracy using machine learning. Out of all the investigated algorithms, the best results are achieved using a Support Vector Machine with 89.0% prediction accuracy for individual batches and 98.9% while combining batches of similar machinability.</abstract><cop>New York, NY</cop><pub>Springer US</pub><doi>10.1007/s10845-020-01718-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4319-4701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1572-8145
ispartof Journal of intelligent manufacturing, 2021-06, Vol.32 (5), p.1485-1495
issn 1572-8145
0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_2521817279
source SpringerLink Journals
subjects Advanced manufacturing technologies
Algorithms
Business and Management
Classification
Control
Machinability
Machine learning
Machines
Machining
Manufacturing
Material batches
Mechatronics
Optimization
Process monitoring
Processes
Production
Production costs
Robotics
Support vector machines
title In-situ identification of material batches using machine learning for machining operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20identification%20of%20material%20batches%20using%20machine%20learning%20for%20machining%20operations&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Lutz,%20Benjamin&rft.date=2021-06-01&rft.volume=32&rft.issue=5&rft.spage=1485&rft.epage=1495&rft.pages=1485-1495&rft.issn=1572-8145&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-020-01718-3&rft_dat=%3Cproquest_cross%3E2521817279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521817279&rft_id=info:pmid/&rfr_iscdi=true