Distribution identification and information loss in a measurement uncertainty network

Measurement uncertainty is an increasingly important consideration in many applications demanding extreme performance levels. In the era of the internet of things and 5G connectivity we can learn more about device performance by utilising the increasing amount of data produced. These data require ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrologia 2021-06, Vol.58 (3), p.34003, Article 034003
Hauptverfasser: Duncan, Paul M, Whittaker, D S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 34003
container_title Metrologia
container_volume 58
creator Duncan, Paul M
Whittaker, D S
description Measurement uncertainty is an increasingly important consideration in many applications demanding extreme performance levels. In the era of the internet of things and 5G connectivity we can learn more about device performance by utilising the increasing amount of data produced. These data require appropriate information infrastructure to facilitate continuous updating of device performance knowledge. This paper presents the results of a study which NPL undertook with a leading test and measurement device manufacturer to examine how measurement uncertainty propagates through the data traceability chain from national standards to end devices. A hierarchy of siloed calculations and heuristics did not enable a satisfactory metadata exchange within the dataflow to ensure an internally consistent calculation of measurement uncertainty. We therefore propose a novel measurement uncertainty network which contains a set of internally consistent measurement models, traceable to national standards and connected through common quantities. The network facilitates sharing and programmatic processing of measurement data with due regard to timeliness, privacy preservation and adherence to FAIR principles in measurement data exchange. An illustrative example of this network is presented with techniques to determine the best-fitting standard probability distribution for a given dataset and the resulting change in information content.
doi_str_mv 10.1088/1681-7575/abeff8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521608781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521608781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-57ef48a7c10022cde8d8cf204002e7a061c1bdcb21d5e0b7f77e0bc421c332813</originalsourceid><addsrcrecordid>eNqNkL1PBCEQxYnRxPOjt9zEwkLXG2BZsDTnZ2Ji49WEZSFBXTiBjfG_l7s12hhjNczkPebND6EjDOcYhJjjVuCaM87mqjPWii00-x5toxkAaWtML5pdtJfSMwDmhPEZWl65lKPrxuyCr1xvfHbWabVple8r522Iw9S_hpTKoFLVYFQaoxmKvBq9NjEr5_NH5U1-D_HlAO1Y9ZrM4VfdR8ub66fFXf3weHu_uHyoNW1wrhk3thGKa1ziEd0b0QttCTSlNVxBizXuet0R3DMDHbecl6IbgjWlRGC6j46nf1cxvI0mZfkcxujLSkkYwS0IvlHBpNKxHBCNlavoBhU_JAa5hifXpOSalJzgFcvpZHk3XbBJO1OO_LYBQNswRrgoL1gvEP9XL1ze0FyE0ediPZusLqx-wv-R6-QX-WCyZEJSCbSgo3LVW_oJJGygqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521608781</pqid></control><display><type>article</type><title>Distribution identification and information loss in a measurement uncertainty network</title><source>IOP Publishing Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Duncan, Paul M ; Whittaker, D S</creator><creatorcontrib>Duncan, Paul M ; Whittaker, D S</creatorcontrib><description>Measurement uncertainty is an increasingly important consideration in many applications demanding extreme performance levels. In the era of the internet of things and 5G connectivity we can learn more about device performance by utilising the increasing amount of data produced. These data require appropriate information infrastructure to facilitate continuous updating of device performance knowledge. This paper presents the results of a study which NPL undertook with a leading test and measurement device manufacturer to examine how measurement uncertainty propagates through the data traceability chain from national standards to end devices. A hierarchy of siloed calculations and heuristics did not enable a satisfactory metadata exchange within the dataflow to ensure an internally consistent calculation of measurement uncertainty. We therefore propose a novel measurement uncertainty network which contains a set of internally consistent measurement models, traceable to national standards and connected through common quantities. The network facilitates sharing and programmatic processing of measurement data with due regard to timeliness, privacy preservation and adherence to FAIR principles in measurement data exchange. An illustrative example of this network is presented with techniques to determine the best-fitting standard probability distribution for a given dataset and the resulting change in information content.</description><identifier>ISSN: 0026-1394</identifier><identifier>EISSN: 1681-7575</identifier><identifier>DOI: 10.1088/1681-7575/abeff8</identifier><identifier>CODEN: MTRGAU</identifier><language>eng</language><publisher>BRISTOL: IOP Publishing</publisher><subject>bootstrapping ; Data exchange ; information loss ; Instruments &amp; Instrumentation ; Internet of Things ; Kolmogorov–Smirnov ; Kullback–Leibler divergence ; measurement uncertainty network ; Physical Sciences ; Physics ; Physics, Applied ; Science &amp; Technology ; Technology ; Uncertainty</subject><ispartof>Metrologia, 2021-06, Vol.58 (3), p.34003, Article 034003</ispartof><rights>2021 BIPM &amp; IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000645527800001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c341t-57ef48a7c10022cde8d8cf204002e7a061c1bdcb21d5e0b7f77e0bc421c332813</cites><orcidid>0000-0003-2452-1647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1681-7575/abeff8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27933,27934,39267,53855,53902</link.rule.ids></links><search><creatorcontrib>Duncan, Paul M</creatorcontrib><creatorcontrib>Whittaker, D S</creatorcontrib><title>Distribution identification and information loss in a measurement uncertainty network</title><title>Metrologia</title><addtitle>MET</addtitle><addtitle>METROLOGIA</addtitle><addtitle>Metrologia</addtitle><description>Measurement uncertainty is an increasingly important consideration in many applications demanding extreme performance levels. In the era of the internet of things and 5G connectivity we can learn more about device performance by utilising the increasing amount of data produced. These data require appropriate information infrastructure to facilitate continuous updating of device performance knowledge. This paper presents the results of a study which NPL undertook with a leading test and measurement device manufacturer to examine how measurement uncertainty propagates through the data traceability chain from national standards to end devices. A hierarchy of siloed calculations and heuristics did not enable a satisfactory metadata exchange within the dataflow to ensure an internally consistent calculation of measurement uncertainty. We therefore propose a novel measurement uncertainty network which contains a set of internally consistent measurement models, traceable to national standards and connected through common quantities. The network facilitates sharing and programmatic processing of measurement data with due regard to timeliness, privacy preservation and adherence to FAIR principles in measurement data exchange. An illustrative example of this network is presented with techniques to determine the best-fitting standard probability distribution for a given dataset and the resulting change in information content.</description><subject>bootstrapping</subject><subject>Data exchange</subject><subject>information loss</subject><subject>Instruments &amp; Instrumentation</subject><subject>Internet of Things</subject><subject>Kolmogorov–Smirnov</subject><subject>Kullback–Leibler divergence</subject><subject>measurement uncertainty network</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Uncertainty</subject><issn>0026-1394</issn><issn>1681-7575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkL1PBCEQxYnRxPOjt9zEwkLXG2BZsDTnZ2Ji49WEZSFBXTiBjfG_l7s12hhjNczkPebND6EjDOcYhJjjVuCaM87mqjPWii00-x5toxkAaWtML5pdtJfSMwDmhPEZWl65lKPrxuyCr1xvfHbWabVple8r522Iw9S_hpTKoFLVYFQaoxmKvBq9NjEr5_NH5U1-D_HlAO1Y9ZrM4VfdR8ub66fFXf3weHu_uHyoNW1wrhk3thGKa1ziEd0b0QttCTSlNVxBizXuet0R3DMDHbecl6IbgjWlRGC6j46nf1cxvI0mZfkcxujLSkkYwS0IvlHBpNKxHBCNlavoBhU_JAa5hifXpOSalJzgFcvpZHk3XbBJO1OO_LYBQNswRrgoL1gvEP9XL1ze0FyE0ediPZusLqx-wv-R6-QX-WCyZEJSCbSgo3LVW_oJJGygqw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Duncan, Paul M</creator><creator>Whittaker, D S</creator><general>IOP Publishing</general><general>Iop Publishing Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2452-1647</orcidid></search><sort><creationdate>20210601</creationdate><title>Distribution identification and information loss in a measurement uncertainty network</title><author>Duncan, Paul M ; Whittaker, D S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-57ef48a7c10022cde8d8cf204002e7a061c1bdcb21d5e0b7f77e0bc421c332813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bootstrapping</topic><topic>Data exchange</topic><topic>information loss</topic><topic>Instruments &amp; Instrumentation</topic><topic>Internet of Things</topic><topic>Kolmogorov–Smirnov</topic><topic>Kullback–Leibler divergence</topic><topic>measurement uncertainty network</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, Paul M</creatorcontrib><creatorcontrib>Whittaker, D S</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Metrologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, Paul M</au><au>Whittaker, D S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution identification and information loss in a measurement uncertainty network</atitle><jtitle>Metrologia</jtitle><stitle>MET</stitle><stitle>METROLOGIA</stitle><addtitle>Metrologia</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>58</volume><issue>3</issue><spage>34003</spage><pages>34003-</pages><artnum>034003</artnum><issn>0026-1394</issn><eissn>1681-7575</eissn><coden>MTRGAU</coden><abstract>Measurement uncertainty is an increasingly important consideration in many applications demanding extreme performance levels. In the era of the internet of things and 5G connectivity we can learn more about device performance by utilising the increasing amount of data produced. These data require appropriate information infrastructure to facilitate continuous updating of device performance knowledge. This paper presents the results of a study which NPL undertook with a leading test and measurement device manufacturer to examine how measurement uncertainty propagates through the data traceability chain from national standards to end devices. A hierarchy of siloed calculations and heuristics did not enable a satisfactory metadata exchange within the dataflow to ensure an internally consistent calculation of measurement uncertainty. We therefore propose a novel measurement uncertainty network which contains a set of internally consistent measurement models, traceable to national standards and connected through common quantities. The network facilitates sharing and programmatic processing of measurement data with due regard to timeliness, privacy preservation and adherence to FAIR principles in measurement data exchange. An illustrative example of this network is presented with techniques to determine the best-fitting standard probability distribution for a given dataset and the resulting change in information content.</abstract><cop>BRISTOL</cop><pub>IOP Publishing</pub><doi>10.1088/1681-7575/abeff8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2452-1647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-1394
ispartof Metrologia, 2021-06, Vol.58 (3), p.34003, Article 034003
issn 0026-1394
1681-7575
language eng
recordid cdi_proquest_journals_2521608781
source IOP Publishing Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Institute of Physics (IOP) Journals - HEAL-Link
subjects bootstrapping
Data exchange
information loss
Instruments & Instrumentation
Internet of Things
Kolmogorov–Smirnov
Kullback–Leibler divergence
measurement uncertainty network
Physical Sciences
Physics
Physics, Applied
Science & Technology
Technology
Uncertainty
title Distribution identification and information loss in a measurement uncertainty network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20identification%20and%20information%20loss%20in%20a%20measurement%20uncertainty%20network&rft.jtitle=Metrologia&rft.au=Duncan,%20Paul%20M&rft.date=2021-06-01&rft.volume=58&rft.issue=3&rft.spage=34003&rft.pages=34003-&rft.artnum=034003&rft.issn=0026-1394&rft.eissn=1681-7575&rft.coden=MTRGAU&rft_id=info:doi/10.1088/1681-7575/abeff8&rft_dat=%3Cproquest_cross%3E2521608781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521608781&rft_id=info:pmid/&rfr_iscdi=true