The First Radio Spectrum of a Rapidly Rotating A-type Star

The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how much they contribute to the expected brightness at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2021-05, Vol.912 (1), p.L5
Hauptverfasser: White, Jacob Aaron, Tapia-Vázquez, F., Hughes, A. G., Moór, A., Matthews, B., Wilner, D., Aufdenberg, J., Fehér, O., Hughes, A. M., De la Luz, V., McNaughton, A., Zapata, L. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L5
container_title Astrophysical journal. Letters
container_volume 912
creator White, Jacob Aaron
Tapia-Vázquez, F.
Hughes, A. G.
Moór, A.
Matthews, B.
Wilner, D.
Aufdenberg, J.
Fehér, O.
Hughes, A. M.
De la Luz, V.
McNaughton, A.
Zapata, L. A.
description The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how much they contribute to the expected brightness at a given radio wavelength are still relatively unknown for most spectral types. We present radio continuum observations of Altair, a rapidly rotating A-type star. We observed Altair with NOEMA in 2018 and 2019 at 1.34, 2.09, and 3.22 mm and with the Very Large Array in 2019 at 6.7 and 9.1 mm. In the radio spectra, we see a brightness temperature minimum at millimeter wavelengths followed by a steep rise to temperatures larger than the optical photosphere, behavior that is unexpected for A-type stars. We use these data to produce the first submillimeter to centimeter spectrum of a rapidly rotating A-type star informed by observations. We generated both PHOENIX and KINICH-PAKAL model atmospheres and determine the KINICH-PAKAL model better reproduces Altair’s radio spectrum. The synthetic spectrum shows a millimeter brightness temperature minimum followed by significant emission over that of the photosphere at centimeter wavelengths. Together, these data and models show how the radio spectrum of an A-type star can reveal the presence of a chromosphere, likely induced by rapid rotation, and that a Rayleigh Jean’s extrapolation of the stellar photosphere is not an adequate representation of a star’s radio spectrum.
doi_str_mv 10.3847/2041-8213/abf6da
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2521608255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521608255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ff32892a79b17cd0a89dfb160d276e4456251d3db2ae5dbbcd2a9da0f857c44f3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwHxZl2SNm3qbQynwkDY5jm8Nol2bEtMskP_-7VU5kVP7_Hxfd97_BC6peQxFVkxYSSjiWA0nUBlcgVnaHSSzk874ZfoKoQNIYzkVIzQ0_pL43njQ8RLUI3FK6fr6A87bA2GTnON2rZ4aSPEZv-Jp0lsncarCP4aXRjYBn3zM8foY_68nr0mi_eXt9l0kdSpIDExJmWiZFCUFS1qRUCUylQ0J4oVuc4ynjNOVaoqBpqrqqoVg1IBMYIXdZaZdIzuhl7n7fdBhyg39uD33UnJOOuKBOO8c5HBVXsbgtdGOt_swLeSEtkTkj0C2eOQA6Eucj9EGut-O8FttrKkTFK54NKp_oGHP3z_1h4B7URzuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521608255</pqid></control><display><type>article</type><title>The First Radio Spectrum of a Rapidly Rotating A-type Star</title><source>Institute of Physics Open Access Journal Titles</source><creator>White, Jacob Aaron ; Tapia-Vázquez, F. ; Hughes, A. G. ; Moór, A. ; Matthews, B. ; Wilner, D. ; Aufdenberg, J. ; Fehér, O. ; Hughes, A. M. ; De la Luz, V. ; McNaughton, A. ; Zapata, L. A.</creator><creatorcontrib>White, Jacob Aaron ; Tapia-Vázquez, F. ; Hughes, A. G. ; Moór, A. ; Matthews, B. ; Wilner, D. ; Aufdenberg, J. ; Fehér, O. ; Hughes, A. M. ; De la Luz, V. ; McNaughton, A. ; Zapata, L. A.</creatorcontrib><description>The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how much they contribute to the expected brightness at a given radio wavelength are still relatively unknown for most spectral types. We present radio continuum observations of Altair, a rapidly rotating A-type star. We observed Altair with NOEMA in 2018 and 2019 at 1.34, 2.09, and 3.22 mm and with the Very Large Array in 2019 at 6.7 and 9.1 mm. In the radio spectra, we see a brightness temperature minimum at millimeter wavelengths followed by a steep rise to temperatures larger than the optical photosphere, behavior that is unexpected for A-type stars. We use these data to produce the first submillimeter to centimeter spectrum of a rapidly rotating A-type star informed by observations. We generated both PHOENIX and KINICH-PAKAL model atmospheres and determine the KINICH-PAKAL model better reproduces Altair’s radio spectrum. The synthetic spectrum shows a millimeter brightness temperature minimum followed by significant emission over that of the photosphere at centimeter wavelengths. Together, these data and models show how the radio spectrum of an A-type star can reveal the presence of a chromosphere, likely induced by rapid rotation, and that a Rayleigh Jean’s extrapolation of the stellar photosphere is not an adequate representation of a star’s radio spectrum.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/abf6da</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>A stars ; Astronomical models ; Atmospheric models ; Brightness temperature ; Chromosphere ; Circumstellar matter ; Emission ; Main sequence stars ; Millimeter astronomy ; Photosphere ; Radio astronomy ; Radio continuum emission ; Radio spectra ; Radio waves ; Spectra ; Spectrum allocation ; Stellar atmospheres ; Stellar models ; Stellar rotation ; Submillimeter astronomy ; Wavelengths</subject><ispartof>Astrophysical journal. Letters, 2021-05, Vol.912 (1), p.L5</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ff32892a79b17cd0a89dfb160d276e4456251d3db2ae5dbbcd2a9da0f857c44f3</citedby><cites>FETCH-LOGICAL-c380t-ff32892a79b17cd0a89dfb160d276e4456251d3db2ae5dbbcd2a9da0f857c44f3</cites><orcidid>0000-0002-4803-6200 ; 0000-0002-4146-7921 ; 0000-0003-0257-4158 ; 0000-0001-8445-0444 ; 0000-0003-2343-7937 ; 0000-0003-1526-7587 ; 0000-0003-3453-4775 ; 0000-0001-9132-7196 ; 0000-0003-3017-9577 ; 0000-0002-3446-0289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abf6da/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abf6da$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>White, Jacob Aaron</creatorcontrib><creatorcontrib>Tapia-Vázquez, F.</creatorcontrib><creatorcontrib>Hughes, A. G.</creatorcontrib><creatorcontrib>Moór, A.</creatorcontrib><creatorcontrib>Matthews, B.</creatorcontrib><creatorcontrib>Wilner, D.</creatorcontrib><creatorcontrib>Aufdenberg, J.</creatorcontrib><creatorcontrib>Fehér, O.</creatorcontrib><creatorcontrib>Hughes, A. M.</creatorcontrib><creatorcontrib>De la Luz, V.</creatorcontrib><creatorcontrib>McNaughton, A.</creatorcontrib><creatorcontrib>Zapata, L. A.</creatorcontrib><title>The First Radio Spectrum of a Rapidly Rotating A-type Star</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how much they contribute to the expected brightness at a given radio wavelength are still relatively unknown for most spectral types. We present radio continuum observations of Altair, a rapidly rotating A-type star. We observed Altair with NOEMA in 2018 and 2019 at 1.34, 2.09, and 3.22 mm and with the Very Large Array in 2019 at 6.7 and 9.1 mm. In the radio spectra, we see a brightness temperature minimum at millimeter wavelengths followed by a steep rise to temperatures larger than the optical photosphere, behavior that is unexpected for A-type stars. We use these data to produce the first submillimeter to centimeter spectrum of a rapidly rotating A-type star informed by observations. We generated both PHOENIX and KINICH-PAKAL model atmospheres and determine the KINICH-PAKAL model better reproduces Altair’s radio spectrum. The synthetic spectrum shows a millimeter brightness temperature minimum followed by significant emission over that of the photosphere at centimeter wavelengths. Together, these data and models show how the radio spectrum of an A-type star can reveal the presence of a chromosphere, likely induced by rapid rotation, and that a Rayleigh Jean’s extrapolation of the stellar photosphere is not an adequate representation of a star’s radio spectrum.</description><subject>A stars</subject><subject>Astronomical models</subject><subject>Atmospheric models</subject><subject>Brightness temperature</subject><subject>Chromosphere</subject><subject>Circumstellar matter</subject><subject>Emission</subject><subject>Main sequence stars</subject><subject>Millimeter astronomy</subject><subject>Photosphere</subject><subject>Radio astronomy</subject><subject>Radio continuum emission</subject><subject>Radio spectra</subject><subject>Radio waves</subject><subject>Spectra</subject><subject>Spectrum allocation</subject><subject>Stellar atmospheres</subject><subject>Stellar models</subject><subject>Stellar rotation</subject><subject>Submillimeter astronomy</subject><subject>Wavelengths</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwHxZl2SNm3qbQynwkDY5jm8Nol2bEtMskP_-7VU5kVP7_Hxfd97_BC6peQxFVkxYSSjiWA0nUBlcgVnaHSSzk874ZfoKoQNIYzkVIzQ0_pL43njQ8RLUI3FK6fr6A87bA2GTnON2rZ4aSPEZv-Jp0lsncarCP4aXRjYBn3zM8foY_68nr0mi_eXt9l0kdSpIDExJmWiZFCUFS1qRUCUylQ0J4oVuc4ynjNOVaoqBpqrqqoVg1IBMYIXdZaZdIzuhl7n7fdBhyg39uD33UnJOOuKBOO8c5HBVXsbgtdGOt_swLeSEtkTkj0C2eOQA6Eucj9EGut-O8FttrKkTFK54NKp_oGHP3z_1h4B7URzuQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>White, Jacob Aaron</creator><creator>Tapia-Vázquez, F.</creator><creator>Hughes, A. G.</creator><creator>Moór, A.</creator><creator>Matthews, B.</creator><creator>Wilner, D.</creator><creator>Aufdenberg, J.</creator><creator>Fehér, O.</creator><creator>Hughes, A. M.</creator><creator>De la Luz, V.</creator><creator>McNaughton, A.</creator><creator>Zapata, L. A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4803-6200</orcidid><orcidid>https://orcid.org/0000-0002-4146-7921</orcidid><orcidid>https://orcid.org/0000-0003-0257-4158</orcidid><orcidid>https://orcid.org/0000-0001-8445-0444</orcidid><orcidid>https://orcid.org/0000-0003-2343-7937</orcidid><orcidid>https://orcid.org/0000-0003-1526-7587</orcidid><orcidid>https://orcid.org/0000-0003-3453-4775</orcidid><orcidid>https://orcid.org/0000-0001-9132-7196</orcidid><orcidid>https://orcid.org/0000-0003-3017-9577</orcidid><orcidid>https://orcid.org/0000-0002-3446-0289</orcidid></search><sort><creationdate>20210501</creationdate><title>The First Radio Spectrum of a Rapidly Rotating A-type Star</title><author>White, Jacob Aaron ; Tapia-Vázquez, F. ; Hughes, A. G. ; Moór, A. ; Matthews, B. ; Wilner, D. ; Aufdenberg, J. ; Fehér, O. ; Hughes, A. M. ; De la Luz, V. ; McNaughton, A. ; Zapata, L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ff32892a79b17cd0a89dfb160d276e4456251d3db2ae5dbbcd2a9da0f857c44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A stars</topic><topic>Astronomical models</topic><topic>Atmospheric models</topic><topic>Brightness temperature</topic><topic>Chromosphere</topic><topic>Circumstellar matter</topic><topic>Emission</topic><topic>Main sequence stars</topic><topic>Millimeter astronomy</topic><topic>Photosphere</topic><topic>Radio astronomy</topic><topic>Radio continuum emission</topic><topic>Radio spectra</topic><topic>Radio waves</topic><topic>Spectra</topic><topic>Spectrum allocation</topic><topic>Stellar atmospheres</topic><topic>Stellar models</topic><topic>Stellar rotation</topic><topic>Submillimeter astronomy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Jacob Aaron</creatorcontrib><creatorcontrib>Tapia-Vázquez, F.</creatorcontrib><creatorcontrib>Hughes, A. G.</creatorcontrib><creatorcontrib>Moór, A.</creatorcontrib><creatorcontrib>Matthews, B.</creatorcontrib><creatorcontrib>Wilner, D.</creatorcontrib><creatorcontrib>Aufdenberg, J.</creatorcontrib><creatorcontrib>Fehér, O.</creatorcontrib><creatorcontrib>Hughes, A. M.</creatorcontrib><creatorcontrib>De la Luz, V.</creatorcontrib><creatorcontrib>McNaughton, A.</creatorcontrib><creatorcontrib>Zapata, L. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>White, Jacob Aaron</au><au>Tapia-Vázquez, F.</au><au>Hughes, A. G.</au><au>Moór, A.</au><au>Matthews, B.</au><au>Wilner, D.</au><au>Aufdenberg, J.</au><au>Fehér, O.</au><au>Hughes, A. M.</au><au>De la Luz, V.</au><au>McNaughton, A.</au><au>Zapata, L. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The First Radio Spectrum of a Rapidly Rotating A-type Star</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>912</volume><issue>1</issue><spage>L5</spage><pages>L5-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how much they contribute to the expected brightness at a given radio wavelength are still relatively unknown for most spectral types. We present radio continuum observations of Altair, a rapidly rotating A-type star. We observed Altair with NOEMA in 2018 and 2019 at 1.34, 2.09, and 3.22 mm and with the Very Large Array in 2019 at 6.7 and 9.1 mm. In the radio spectra, we see a brightness temperature minimum at millimeter wavelengths followed by a steep rise to temperatures larger than the optical photosphere, behavior that is unexpected for A-type stars. We use these data to produce the first submillimeter to centimeter spectrum of a rapidly rotating A-type star informed by observations. We generated both PHOENIX and KINICH-PAKAL model atmospheres and determine the KINICH-PAKAL model better reproduces Altair’s radio spectrum. The synthetic spectrum shows a millimeter brightness temperature minimum followed by significant emission over that of the photosphere at centimeter wavelengths. Together, these data and models show how the radio spectrum of an A-type star can reveal the presence of a chromosphere, likely induced by rapid rotation, and that a Rayleigh Jean’s extrapolation of the stellar photosphere is not an adequate representation of a star’s radio spectrum.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/abf6da</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4803-6200</orcidid><orcidid>https://orcid.org/0000-0002-4146-7921</orcidid><orcidid>https://orcid.org/0000-0003-0257-4158</orcidid><orcidid>https://orcid.org/0000-0001-8445-0444</orcidid><orcidid>https://orcid.org/0000-0003-2343-7937</orcidid><orcidid>https://orcid.org/0000-0003-1526-7587</orcidid><orcidid>https://orcid.org/0000-0003-3453-4775</orcidid><orcidid>https://orcid.org/0000-0001-9132-7196</orcidid><orcidid>https://orcid.org/0000-0003-3017-9577</orcidid><orcidid>https://orcid.org/0000-0002-3446-0289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2021-05, Vol.912 (1), p.L5
issn 2041-8205
2041-8213
language eng
recordid cdi_proquest_journals_2521608255
source Institute of Physics Open Access Journal Titles
subjects A stars
Astronomical models
Atmospheric models
Brightness temperature
Chromosphere
Circumstellar matter
Emission
Main sequence stars
Millimeter astronomy
Photosphere
Radio astronomy
Radio continuum emission
Radio spectra
Radio waves
Spectra
Spectrum allocation
Stellar atmospheres
Stellar models
Stellar rotation
Submillimeter astronomy
Wavelengths
title The First Radio Spectrum of a Rapidly Rotating A-type Star
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20First%20Radio%20Spectrum%20of%20a%20Rapidly%20Rotating%20A-type%20Star&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=White,%20Jacob%20Aaron&rft.date=2021-05-01&rft.volume=912&rft.issue=1&rft.spage=L5&rft.pages=L5-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/abf6da&rft_dat=%3Cproquest_O3W%3E2521608255%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521608255&rft_id=info:pmid/&rfr_iscdi=true