Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows

A hybrid mathematical model has been developed in which the flow field of a viscous incompressible medium is calculated by the method of lattice Boltzmann equations using the Bhatnagar–Gross–Krook approximation and a two-dimensional nine-velocity scheme, and free convective heat transfer is calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering physics and thermophysics 2021-03, Vol.94 (2), p.415-422
1. Verfasser: Ni, A. É.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 2
container_start_page 415
container_title Journal of engineering physics and thermophysics
container_volume 94
creator Ni, A. É.
description A hybrid mathematical model has been developed in which the flow field of a viscous incompressible medium is calculated by the method of lattice Boltzmann equations using the Bhatnagar–Gross–Krook approximation and a two-dimensional nine-velocity scheme, and free convective heat transfer is calculated by the finite difference method. The formulated approach to solving thermogravitational-convection problems has been verified on numerical and experimental data of other researchers. From a comparative analysis, it has been established that the computational efficiency of the hybrid mathematical model is 50 times higher than that of the traditional approach, which is based on the finite difference method and transformed "vorticity–stream function" variables.
doi_str_mv 10.1007/s10891-021-02326-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2521566657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697337373</galeid><sourcerecordid>A697337373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7cd66e3c9d65411c425e250adb0e159d9bee16e7974d91de08e56a4b9b9b14a03</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoqKN_wFXAlYuOeTRps1RxdGAGwQe4C2lzO1Y6jSYZX7_ezFQQN3IIN-Se73LDQeiIkjElpDgNlJSKZoStD2cyE1toj4qCZ2VBH7fTnUiWEcrELtoP4ZkQosqc76Gb68_KtxbPIT45i12DZybGtgZ87rr4tTR9jy9fVya2rg84Ojx3Fjp8_wR-6RbevLVx0zMdnnTuPRygncZ0AQ5_6gg9TC7vL66z2c3V9OJsltW8JDEraisl8FpZKXJK65wJYIIYWxGgQllVAVAJhSpyq6gFUoKQJq9UEs0N4SN0PMx98e51BSHqZ7fyaY2gmWBUSCnT70doPLgWpgPd9o2L3tRJFpZt7Xpo2vR-JlXBeZGUgJM_QPJE-IgLswpBT-9u_3rZ4K29C8FDo198uzT-U1Oi16noIRWdUtGbVLRIEB-gkMz9Avzv3v9Q31R6jn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521566657</pqid></control><display><type>article</type><title>Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ni, A. É.</creator><creatorcontrib>Ni, A. É.</creatorcontrib><description>A hybrid mathematical model has been developed in which the flow field of a viscous incompressible medium is calculated by the method of lattice Boltzmann equations using the Bhatnagar–Gross–Krook approximation and a two-dimensional nine-velocity scheme, and free convective heat transfer is calculated by the finite difference method. The formulated approach to solving thermogravitational-convection problems has been verified on numerical and experimental data of other researchers. From a comparative analysis, it has been established that the computational efficiency of the hybrid mathematical model is 50 times higher than that of the traditional approach, which is based on the finite difference method and transformed "vorticity–stream function" variables.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-021-02326-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical Mechanics ; Complex Systems ; Computational fluid dynamics ; Convective heat transfer ; Engineering ; Engineering Thermodynamics ; Finite difference method ; Fluid flow ; Heat and Mass Transfer ; Incompressible flow ; Industrial Chemistry/Chemical Engineering ; Kinetic Theory of Transfer Processes ; Mathematical models ; Thermodynamics ; Vorticity</subject><ispartof>Journal of engineering physics and thermophysics, 2021-03, Vol.94 (2), p.415-422</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-7cd66e3c9d65411c425e250adb0e159d9bee16e7974d91de08e56a4b9b9b14a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-021-02326-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-021-02326-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ni, A. É.</creatorcontrib><title>Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>A hybrid mathematical model has been developed in which the flow field of a viscous incompressible medium is calculated by the method of lattice Boltzmann equations using the Bhatnagar–Gross–Krook approximation and a two-dimensional nine-velocity scheme, and free convective heat transfer is calculated by the finite difference method. The formulated approach to solving thermogravitational-convection problems has been verified on numerical and experimental data of other researchers. From a comparative analysis, it has been established that the computational efficiency of the hybrid mathematical model is 50 times higher than that of the traditional approach, which is based on the finite difference method and transformed "vorticity–stream function" variables.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Convective heat transfer</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Incompressible flow</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kinetic Theory of Transfer Processes</subject><subject>Mathematical models</subject><subject>Thermodynamics</subject><subject>Vorticity</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMoqKN_wFXAlYuOeTRps1RxdGAGwQe4C2lzO1Y6jSYZX7_ezFQQN3IIN-Se73LDQeiIkjElpDgNlJSKZoStD2cyE1toj4qCZ2VBH7fTnUiWEcrELtoP4ZkQosqc76Gb68_KtxbPIT45i12DZybGtgZ87rr4tTR9jy9fVya2rg84Ojx3Fjp8_wR-6RbevLVx0zMdnnTuPRygncZ0AQ5_6gg9TC7vL66z2c3V9OJsltW8JDEraisl8FpZKXJK65wJYIIYWxGgQllVAVAJhSpyq6gFUoKQJq9UEs0N4SN0PMx98e51BSHqZ7fyaY2gmWBUSCnT70doPLgWpgPd9o2L3tRJFpZt7Xpo2vR-JlXBeZGUgJM_QPJE-IgLswpBT-9u_3rZ4K29C8FDo198uzT-U1Oi16noIRWdUtGbVLRIEB-gkMz9Avzv3v9Q31R6jn8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ni, A. É.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210301</creationdate><title>Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows</title><author>Ni, A. É.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7cd66e3c9d65411c425e250adb0e159d9bee16e7974d91de08e56a4b9b9b14a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Convective heat transfer</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Incompressible flow</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kinetic Theory of Transfer Processes</topic><topic>Mathematical models</topic><topic>Thermodynamics</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, A. É.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, A. É.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>94</volume><issue>2</issue><spage>415</spage><epage>422</epage><pages>415-422</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>A hybrid mathematical model has been developed in which the flow field of a viscous incompressible medium is calculated by the method of lattice Boltzmann equations using the Bhatnagar–Gross–Krook approximation and a two-dimensional nine-velocity scheme, and free convective heat transfer is calculated by the finite difference method. The formulated approach to solving thermogravitational-convection problems has been verified on numerical and experimental data of other researchers. From a comparative analysis, it has been established that the computational efficiency of the hybrid mathematical model is 50 times higher than that of the traditional approach, which is based on the finite difference method and transformed "vorticity–stream function" variables.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10891-021-02326-5</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-0125
ispartof Journal of engineering physics and thermophysics, 2021-03, Vol.94 (2), p.415-422
issn 1062-0125
1573-871X
language eng
recordid cdi_proquest_journals_2521566657
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Complex Systems
Computational fluid dynamics
Convective heat transfer
Engineering
Engineering Thermodynamics
Finite difference method
Fluid flow
Heat and Mass Transfer
Incompressible flow
Industrial Chemistry/Chemical Engineering
Kinetic Theory of Transfer Processes
Mathematical models
Thermodynamics
Vorticity
title Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Method%20of%20Lattice%20Boltzmann%20Equations%20to%20Model%20Thermogravitational%20Flows&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Ni,%20A.%20%C3%89.&rft.date=2021-03-01&rft.volume=94&rft.issue=2&rft.spage=415&rft.epage=422&rft.pages=415-422&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-021-02326-5&rft_dat=%3Cgale_proqu%3EA697337373%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521566657&rft_id=info:pmid/&rft_galeid=A697337373&rfr_iscdi=true