Welding thermal efficiency in cold wire gas metal arc welding
Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted t...
Gespeichert in:
Veröffentlicht in: | Welding in the world 2021-06, Vol.65 (6), p.1079-1095 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1095 |
---|---|
container_issue | 6 |
container_start_page | 1079 |
container_title | Welding in the world |
container_volume | 65 |
creator | Ribeiro, R. A. Assunção, P. D. C. Braga, E. M. Gerlich, A. P. |
description | Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool. |
doi_str_mv | 10.1007/s40194-021-01070-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521566471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521566471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWKs_4CrgOnrzni5cSPEFBTeKy5DJo06ZztRkStu_NzqCOxeXuznnXjgIXVK4pgD6JgugM0GAUQIUNJD9EZrQSldEKTU7RhMAwQljVXWKznJeAcCszATdvofWN90SDx8hrW2LQ4yNa0LnDrjpsOtbj3dNCnhpM16HoRA2ObwbrXN0Em2bw8XvnqK3h_vX-RNZvDw-z-8WxPFKDqRmAmRUQUgdmWXCB-pA21p67ZmsQ00VdRy4r0PhtdCCA1Rc1z5qy5TnU3Q13t2k_nMb8mBW_TZ15aVhklGplNC0UGykXOpzTiGaTWrWNh0MBfOdyYyZTMlkfjKZfZH4KOUCd8uQ_k7_Y30BKeJp_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521566471</pqid></control><display><type>article</type><title>Welding thermal efficiency in cold wire gas metal arc welding</title><source>SpringerLink Journals</source><creator>Ribeiro, R. A. ; Assunção, P. D. C. ; Braga, E. M. ; Gerlich, A. P.</creator><creatorcontrib>Ribeiro, R. A. ; Assunção, P. D. C. ; Braga, E. M. ; Gerlich, A. P.</creatorcontrib><description>Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-021-01070-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arc heating ; Base metal ; Brittleness ; Carbon steels ; Chemistry and Materials Science ; Cold ; Cold welding ; Cooling rate ; Cross-sections ; Diamond pyramid hardness ; Efficiency ; Enthalpy ; Gas metal arc welding ; Materials Science ; Metallic Materials ; Research Paper ; Short circuits ; Solid Mechanics ; Steel plates ; Theoretical and Applied Mechanics ; Thermodynamic efficiency ; Wire</subject><ispartof>Welding in the world, 2021-06, Vol.65 (6), p.1079-1095</ispartof><rights>International Institute of Welding 2021</rights><rights>International Institute of Welding 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</citedby><cites>FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-021-01070-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-021-01070-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ribeiro, R. A.</creatorcontrib><creatorcontrib>Assunção, P. D. C.</creatorcontrib><creatorcontrib>Braga, E. M.</creatorcontrib><creatorcontrib>Gerlich, A. P.</creatorcontrib><title>Welding thermal efficiency in cold wire gas metal arc welding</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool.</description><subject>Arc heating</subject><subject>Base metal</subject><subject>Brittleness</subject><subject>Carbon steels</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Cold welding</subject><subject>Cooling rate</subject><subject>Cross-sections</subject><subject>Diamond pyramid hardness</subject><subject>Efficiency</subject><subject>Enthalpy</subject><subject>Gas metal arc welding</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Research Paper</subject><subject>Short circuits</subject><subject>Solid Mechanics</subject><subject>Steel plates</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermodynamic efficiency</subject><subject>Wire</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWKs_4CrgOnrzni5cSPEFBTeKy5DJo06ZztRkStu_NzqCOxeXuznnXjgIXVK4pgD6JgugM0GAUQIUNJD9EZrQSldEKTU7RhMAwQljVXWKznJeAcCszATdvofWN90SDx8hrW2LQ4yNa0LnDrjpsOtbj3dNCnhpM16HoRA2ObwbrXN0Em2bw8XvnqK3h_vX-RNZvDw-z-8WxPFKDqRmAmRUQUgdmWXCB-pA21p67ZmsQ00VdRy4r0PhtdCCA1Rc1z5qy5TnU3Q13t2k_nMb8mBW_TZ15aVhklGplNC0UGykXOpzTiGaTWrWNh0MBfOdyYyZTMlkfjKZfZH4KOUCd8uQ_k7_Y30BKeJp_Q</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ribeiro, R. A.</creator><creator>Assunção, P. D. C.</creator><creator>Braga, E. M.</creator><creator>Gerlich, A. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Welding thermal efficiency in cold wire gas metal arc welding</title><author>Ribeiro, R. A. ; Assunção, P. D. C. ; Braga, E. M. ; Gerlich, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arc heating</topic><topic>Base metal</topic><topic>Brittleness</topic><topic>Carbon steels</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Cold welding</topic><topic>Cooling rate</topic><topic>Cross-sections</topic><topic>Diamond pyramid hardness</topic><topic>Efficiency</topic><topic>Enthalpy</topic><topic>Gas metal arc welding</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Research Paper</topic><topic>Short circuits</topic><topic>Solid Mechanics</topic><topic>Steel plates</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermodynamic efficiency</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, R. A.</creatorcontrib><creatorcontrib>Assunção, P. D. C.</creatorcontrib><creatorcontrib>Braga, E. M.</creatorcontrib><creatorcontrib>Gerlich, A. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, R. A.</au><au>Assunção, P. D. C.</au><au>Braga, E. M.</au><au>Gerlich, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Welding thermal efficiency in cold wire gas metal arc welding</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>65</volume><issue>6</issue><spage>1079</spage><epage>1095</epage><pages>1079-1095</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-021-01070-x</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-2288 |
ispartof | Welding in the world, 2021-06, Vol.65 (6), p.1079-1095 |
issn | 0043-2288 1878-6669 |
language | eng |
recordid | cdi_proquest_journals_2521566471 |
source | SpringerLink Journals |
subjects | Arc heating Base metal Brittleness Carbon steels Chemistry and Materials Science Cold Cold welding Cooling rate Cross-sections Diamond pyramid hardness Efficiency Enthalpy Gas metal arc welding Materials Science Metallic Materials Research Paper Short circuits Solid Mechanics Steel plates Theoretical and Applied Mechanics Thermodynamic efficiency Wire |
title | Welding thermal efficiency in cold wire gas metal arc welding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Welding%20thermal%20efficiency%20in%20cold%20wire%20gas%20metal%20arc%20welding&rft.jtitle=Welding%20in%20the%20world&rft.au=Ribeiro,%20R.%20A.&rft.date=2021-06-01&rft.volume=65&rft.issue=6&rft.spage=1079&rft.epage=1095&rft.pages=1079-1095&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-021-01070-x&rft_dat=%3Cproquest_cross%3E2521566471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521566471&rft_id=info:pmid/&rfr_iscdi=true |