Welding thermal efficiency in cold wire gas metal arc welding

Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Welding in the world 2021-06, Vol.65 (6), p.1079-1095
Hauptverfasser: Ribeiro, R. A., Assunção, P. D. C., Braga, E. M., Gerlich, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 6
container_start_page 1079
container_title Welding in the world
container_volume 65
creator Ribeiro, R. A.
Assunção, P. D. C.
Braga, E. M.
Gerlich, A. P.
description Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool.
doi_str_mv 10.1007/s40194-021-01070-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521566471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521566471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWKs_4CrgOnrzni5cSPEFBTeKy5DJo06ZztRkStu_NzqCOxeXuznnXjgIXVK4pgD6JgugM0GAUQIUNJD9EZrQSldEKTU7RhMAwQljVXWKznJeAcCszATdvofWN90SDx8hrW2LQ4yNa0LnDrjpsOtbj3dNCnhpM16HoRA2ObwbrXN0Em2bw8XvnqK3h_vX-RNZvDw-z-8WxPFKDqRmAmRUQUgdmWXCB-pA21p67ZmsQ00VdRy4r0PhtdCCA1Rc1z5qy5TnU3Q13t2k_nMb8mBW_TZ15aVhklGplNC0UGykXOpzTiGaTWrWNh0MBfOdyYyZTMlkfjKZfZH4KOUCd8uQ_k7_Y30BKeJp_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521566471</pqid></control><display><type>article</type><title>Welding thermal efficiency in cold wire gas metal arc welding</title><source>SpringerLink Journals</source><creator>Ribeiro, R. A. ; Assunção, P. D. C. ; Braga, E. M. ; Gerlich, A. P.</creator><creatorcontrib>Ribeiro, R. A. ; Assunção, P. D. C. ; Braga, E. M. ; Gerlich, A. P.</creatorcontrib><description>Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-021-01070-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arc heating ; Base metal ; Brittleness ; Carbon steels ; Chemistry and Materials Science ; Cold ; Cold welding ; Cooling rate ; Cross-sections ; Diamond pyramid hardness ; Efficiency ; Enthalpy ; Gas metal arc welding ; Materials Science ; Metallic Materials ; Research Paper ; Short circuits ; Solid Mechanics ; Steel plates ; Theoretical and Applied Mechanics ; Thermodynamic efficiency ; Wire</subject><ispartof>Welding in the world, 2021-06, Vol.65 (6), p.1079-1095</ispartof><rights>International Institute of Welding 2021</rights><rights>International Institute of Welding 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</citedby><cites>FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-021-01070-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-021-01070-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ribeiro, R. A.</creatorcontrib><creatorcontrib>Assunção, P. D. C.</creatorcontrib><creatorcontrib>Braga, E. M.</creatorcontrib><creatorcontrib>Gerlich, A. P.</creatorcontrib><title>Welding thermal efficiency in cold wire gas metal arc welding</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool.</description><subject>Arc heating</subject><subject>Base metal</subject><subject>Brittleness</subject><subject>Carbon steels</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Cold welding</subject><subject>Cooling rate</subject><subject>Cross-sections</subject><subject>Diamond pyramid hardness</subject><subject>Efficiency</subject><subject>Enthalpy</subject><subject>Gas metal arc welding</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Research Paper</subject><subject>Short circuits</subject><subject>Solid Mechanics</subject><subject>Steel plates</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermodynamic efficiency</subject><subject>Wire</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWKs_4CrgOnrzni5cSPEFBTeKy5DJo06ZztRkStu_NzqCOxeXuznnXjgIXVK4pgD6JgugM0GAUQIUNJD9EZrQSldEKTU7RhMAwQljVXWKznJeAcCszATdvofWN90SDx8hrW2LQ4yNa0LnDrjpsOtbj3dNCnhpM16HoRA2ObwbrXN0Em2bw8XvnqK3h_vX-RNZvDw-z-8WxPFKDqRmAmRUQUgdmWXCB-pA21p67ZmsQ00VdRy4r0PhtdCCA1Rc1z5qy5TnU3Q13t2k_nMb8mBW_TZ15aVhklGplNC0UGykXOpzTiGaTWrWNh0MBfOdyYyZTMlkfjKZfZH4KOUCd8uQ_k7_Y30BKeJp_Q</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ribeiro, R. A.</creator><creator>Assunção, P. D. C.</creator><creator>Braga, E. M.</creator><creator>Gerlich, A. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Welding thermal efficiency in cold wire gas metal arc welding</title><author>Ribeiro, R. A. ; Assunção, P. D. C. ; Braga, E. M. ; Gerlich, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b2405f6e457f2a24de1c07ab5d7d25beb161c303dbe3857474300837bdf7a26d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arc heating</topic><topic>Base metal</topic><topic>Brittleness</topic><topic>Carbon steels</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Cold welding</topic><topic>Cooling rate</topic><topic>Cross-sections</topic><topic>Diamond pyramid hardness</topic><topic>Efficiency</topic><topic>Enthalpy</topic><topic>Gas metal arc welding</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Research Paper</topic><topic>Short circuits</topic><topic>Solid Mechanics</topic><topic>Steel plates</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermodynamic efficiency</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, R. A.</creatorcontrib><creatorcontrib>Assunção, P. D. C.</creatorcontrib><creatorcontrib>Braga, E. M.</creatorcontrib><creatorcontrib>Gerlich, A. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, R. A.</au><au>Assunção, P. D. C.</au><au>Braga, E. M.</au><au>Gerlich, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Welding thermal efficiency in cold wire gas metal arc welding</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>65</volume><issue>6</issue><spage>1079</spage><epage>1095</epage><pages>1079-1095</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Cold wire gas metal arc welding (CW-GMAW) has been increasingly used in heavy-gauge manufacturing where high deposition rates are required. In such applications, the thermal efficiency of the CW-GMAW is crucial, yet it is not reported in the literature. Water calorimetry experiments were conducted to assess the thermal efficiency of CW-GMAW for two cold wire feed fractions and three common transfer modes: short circuit, globular, and spray, and these are compared to standard GMAW using the same transfer modes. The welds were produced using ER70S-6 as the electrode and cold wires. AISI 1020 plain carbon steel plates were used as the base metal with thicknesses of 9.53 mm and 6.35 mm. After producing the welds, three cross-sections were cut and analyzed using Vickers hardness maps, where differences were attributed to cooling variation rate across the weld cross-sections in high arc power samples. Results have shown that feeding a cold wire into the arc can re-introduce part of the lost heat back into the weld pool both in the short circuit and spray transfer regimes, suggesting an increase in the heat content in the weld pool.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-021-01070-x</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-2288
ispartof Welding in the world, 2021-06, Vol.65 (6), p.1079-1095
issn 0043-2288
1878-6669
language eng
recordid cdi_proquest_journals_2521566471
source SpringerLink Journals
subjects Arc heating
Base metal
Brittleness
Carbon steels
Chemistry and Materials Science
Cold
Cold welding
Cooling rate
Cross-sections
Diamond pyramid hardness
Efficiency
Enthalpy
Gas metal arc welding
Materials Science
Metallic Materials
Research Paper
Short circuits
Solid Mechanics
Steel plates
Theoretical and Applied Mechanics
Thermodynamic efficiency
Wire
title Welding thermal efficiency in cold wire gas metal arc welding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Welding%20thermal%20efficiency%20in%20cold%20wire%20gas%20metal%20arc%20welding&rft.jtitle=Welding%20in%20the%20world&rft.au=Ribeiro,%20R.%20A.&rft.date=2021-06-01&rft.volume=65&rft.issue=6&rft.spage=1079&rft.epage=1095&rft.pages=1079-1095&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-021-01070-x&rft_dat=%3Cproquest_cross%3E2521566471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521566471&rft_id=info:pmid/&rfr_iscdi=true