Mitigating the P2–O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction

P2-type Na2/3Ni1/3Mn2/3O2 is one of the most promising cathode candidates for sodium-ion batteries due to its high specific capacity and high working voltage. However, a detrimental P2–O2 phase transition usually occurs at a high voltage (>4.2 V) leading to poor cycle stability. Herein, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (17), p.10803-10811
Hauptverfasser: Mao, Qianjiang, Yang, Yu, Wang, Junkai, Zheng, Lirong, Wang, Zhenya, Qiu, Yunsheng, Hao, Yongmei, Liu, Xiangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10811
container_issue 17
container_start_page 10803
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Mao, Qianjiang
Yang, Yu
Wang, Junkai
Zheng, Lirong
Wang, Zhenya
Qiu, Yunsheng
Hao, Yongmei
Liu, Xiangfeng
description P2-type Na2/3Ni1/3Mn2/3O2 is one of the most promising cathode candidates for sodium-ion batteries due to its high specific capacity and high working voltage. However, a detrimental P2–O2 phase transition usually occurs at a high voltage (>4.2 V) leading to poor cycle stability. Herein, we propose to mitigate this critical issue through a controlled F−/Ca2+ dual-doping strategy with CaF2 as a dopant. The divalent Ca2+ ion doped in the Na layer stabilizes the layered structure at a high voltage when excessive Na+ is extracted. The more electronegative F− ion forms a stronger transition metal (TM)–F bond and reduces the electrostatic repulsion between the oxygen layers impeding the gliding of TMO2 layers. The Ca2+/F− co-doping successfully suppresses the unfavorable P2–O2 phase transition, and significantly improves the structural stability and cycling performance (27.1% vs. 87.2% after 500 cycles at 1C). Furthermore, density functional theory calculations combined with experimental tests reveal that the incorporation of Ca2+ and F− in Na sites and O sites facilitates the electronic and ionic conductivity owing to Na+/vacancy disordering, which enhances the high-rate capability. This study provides some insights into the design of long-life and high-rate cathode materials for sodium-ion batteries.
doi_str_mv 10.1039/d1ta01433a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2521485605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521485605</sourcerecordid><originalsourceid>FETCH-LOGICAL-g216t-1b499d7576f1c7a29dd055423a0eaa8464f8accaeea1b0e3b47b712346ebe8e23</originalsourceid><addsrcrecordid>eNo9jctOwzAQRS0EElXphi-wxBKF-BUnWaKKl9QHC1hXE3tSUlVOiR1Ed_wDG76PL8EpiNnM1cw99xJyztkVZ7JMLQ_AuJISjshIsIwluSr18b8uilMy8X7D4hSM6bIcka95E5o1hMataXhB-ii-Pz6XgoYOnI-v1lFwli7gMn0DA87sadtZ7AZ_4-JdpHLR8FTOXVQRrPYRiFhq4EDbHraJbXcDULcdrcGHQ6QPUG1xSI5BHrvBneJ7LDaDPCMnNWw9Tv72mDzf3jxN75PZ8u5hej1L1oLrkPBKlaXNs1zX3OQgSmtZlikhgSFAobSqCzAGEIFXDGWl8irnQiqNFRYo5Jhc_Obuuva1Rx9Wm7bvXKxciUxwVWSaZfIHOcxqGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521485605</pqid></control><display><type>article</type><title>Mitigating the P2–O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mao, Qianjiang ; Yang, Yu ; Wang, Junkai ; Zheng, Lirong ; Wang, Zhenya ; Qiu, Yunsheng ; Hao, Yongmei ; Liu, Xiangfeng</creator><creatorcontrib>Mao, Qianjiang ; Yang, Yu ; Wang, Junkai ; Zheng, Lirong ; Wang, Zhenya ; Qiu, Yunsheng ; Hao, Yongmei ; Liu, Xiangfeng</creatorcontrib><description>P2-type Na2/3Ni1/3Mn2/3O2 is one of the most promising cathode candidates for sodium-ion batteries due to its high specific capacity and high working voltage. However, a detrimental P2–O2 phase transition usually occurs at a high voltage (&gt;4.2 V) leading to poor cycle stability. Herein, we propose to mitigate this critical issue through a controlled F−/Ca2+ dual-doping strategy with CaF2 as a dopant. The divalent Ca2+ ion doped in the Na layer stabilizes the layered structure at a high voltage when excessive Na+ is extracted. The more electronegative F− ion forms a stronger transition metal (TM)–F bond and reduces the electrostatic repulsion between the oxygen layers impeding the gliding of TMO2 layers. The Ca2+/F− co-doping successfully suppresses the unfavorable P2–O2 phase transition, and significantly improves the structural stability and cycling performance (27.1% vs. 87.2% after 500 cycles at 1C). Furthermore, density functional theory calculations combined with experimental tests reveal that the incorporation of Ca2+ and F− in Na sites and O sites facilitates the electronic and ionic conductivity owing to Na+/vacancy disordering, which enhances the high-rate capability. This study provides some insights into the design of long-life and high-rate cathode materials for sodium-ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta01433a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Calcium ; Calcium ions ; Cathodes ; Control stability ; Density functional theory ; Doping ; Electrode materials ; Electronegativity ; Gliding ; High voltage ; High voltages ; Ion currents ; Phase transitions ; Rechargeable batteries ; Sodium ; Sodium channels (voltage-gated) ; Sodium-ion batteries ; Specific capacity ; Structural stability ; Transition metals ; Vacancies</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (17), p.10803-10811</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mao, Qianjiang</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Junkai</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Wang, Zhenya</creatorcontrib><creatorcontrib>Qiu, Yunsheng</creatorcontrib><creatorcontrib>Hao, Yongmei</creatorcontrib><creatorcontrib>Liu, Xiangfeng</creatorcontrib><title>Mitigating the P2–O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>P2-type Na2/3Ni1/3Mn2/3O2 is one of the most promising cathode candidates for sodium-ion batteries due to its high specific capacity and high working voltage. However, a detrimental P2–O2 phase transition usually occurs at a high voltage (&gt;4.2 V) leading to poor cycle stability. Herein, we propose to mitigate this critical issue through a controlled F−/Ca2+ dual-doping strategy with CaF2 as a dopant. The divalent Ca2+ ion doped in the Na layer stabilizes the layered structure at a high voltage when excessive Na+ is extracted. The more electronegative F− ion forms a stronger transition metal (TM)–F bond and reduces the electrostatic repulsion between the oxygen layers impeding the gliding of TMO2 layers. The Ca2+/F− co-doping successfully suppresses the unfavorable P2–O2 phase transition, and significantly improves the structural stability and cycling performance (27.1% vs. 87.2% after 500 cycles at 1C). Furthermore, density functional theory calculations combined with experimental tests reveal that the incorporation of Ca2+ and F− in Na sites and O sites facilitates the electronic and ionic conductivity owing to Na+/vacancy disordering, which enhances the high-rate capability. This study provides some insights into the design of long-life and high-rate cathode materials for sodium-ion batteries.</description><subject>Batteries</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cathodes</subject><subject>Control stability</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Electronegativity</subject><subject>Gliding</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Ion currents</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium channels (voltage-gated)</subject><subject>Sodium-ion batteries</subject><subject>Specific capacity</subject><subject>Structural stability</subject><subject>Transition metals</subject><subject>Vacancies</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jctOwzAQRS0EElXphi-wxBKF-BUnWaKKl9QHC1hXE3tSUlVOiR1Ed_wDG76PL8EpiNnM1cw99xJyztkVZ7JMLQ_AuJISjshIsIwluSr18b8uilMy8X7D4hSM6bIcka95E5o1hMataXhB-ii-Pz6XgoYOnI-v1lFwli7gMn0DA87sadtZ7AZ_4-JdpHLR8FTOXVQRrPYRiFhq4EDbHraJbXcDULcdrcGHQ6QPUG1xSI5BHrvBneJ7LDaDPCMnNWw9Tv72mDzf3jxN75PZ8u5hej1L1oLrkPBKlaXNs1zX3OQgSmtZlikhgSFAobSqCzAGEIFXDGWl8irnQiqNFRYo5Jhc_Obuuva1Rx9Wm7bvXKxciUxwVWSaZfIHOcxqGg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Mao, Qianjiang</creator><creator>Yang, Yu</creator><creator>Wang, Junkai</creator><creator>Zheng, Lirong</creator><creator>Wang, Zhenya</creator><creator>Qiu, Yunsheng</creator><creator>Hao, Yongmei</creator><creator>Liu, Xiangfeng</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210101</creationdate><title>Mitigating the P2–O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction</title><author>Mao, Qianjiang ; Yang, Yu ; Wang, Junkai ; Zheng, Lirong ; Wang, Zhenya ; Qiu, Yunsheng ; Hao, Yongmei ; Liu, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g216t-1b499d7576f1c7a29dd055423a0eaa8464f8accaeea1b0e3b47b712346ebe8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cathodes</topic><topic>Control stability</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Electronegativity</topic><topic>Gliding</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Ion currents</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium channels (voltage-gated)</topic><topic>Sodium-ion batteries</topic><topic>Specific capacity</topic><topic>Structural stability</topic><topic>Transition metals</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Qianjiang</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Junkai</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Wang, Zhenya</creatorcontrib><creatorcontrib>Qiu, Yunsheng</creatorcontrib><creatorcontrib>Hao, Yongmei</creatorcontrib><creatorcontrib>Liu, Xiangfeng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Qianjiang</au><au>Yang, Yu</au><au>Wang, Junkai</au><au>Zheng, Lirong</au><au>Wang, Zhenya</au><au>Qiu, Yunsheng</au><au>Hao, Yongmei</au><au>Liu, Xiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating the P2–O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>17</issue><spage>10803</spage><epage>10811</epage><pages>10803-10811</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>P2-type Na2/3Ni1/3Mn2/3O2 is one of the most promising cathode candidates for sodium-ion batteries due to its high specific capacity and high working voltage. However, a detrimental P2–O2 phase transition usually occurs at a high voltage (&gt;4.2 V) leading to poor cycle stability. Herein, we propose to mitigate this critical issue through a controlled F−/Ca2+ dual-doping strategy with CaF2 as a dopant. The divalent Ca2+ ion doped in the Na layer stabilizes the layered structure at a high voltage when excessive Na+ is extracted. The more electronegative F− ion forms a stronger transition metal (TM)–F bond and reduces the electrostatic repulsion between the oxygen layers impeding the gliding of TMO2 layers. The Ca2+/F− co-doping successfully suppresses the unfavorable P2–O2 phase transition, and significantly improves the structural stability and cycling performance (27.1% vs. 87.2% after 500 cycles at 1C). Furthermore, density functional theory calculations combined with experimental tests reveal that the incorporation of Ca2+ and F− in Na sites and O sites facilitates the electronic and ionic conductivity owing to Na+/vacancy disordering, which enhances the high-rate capability. This study provides some insights into the design of long-life and high-rate cathode materials for sodium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta01433a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (17), p.10803-10811
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2521485605
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Calcium
Calcium ions
Cathodes
Control stability
Density functional theory
Doping
Electrode materials
Electronegativity
Gliding
High voltage
High voltages
Ion currents
Phase transitions
Rechargeable batteries
Sodium
Sodium channels (voltage-gated)
Sodium-ion batteries
Specific capacity
Structural stability
Transition metals
Vacancies
title Mitigating the P2–O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20the%20P2%E2%80%93O2%20transition%20and%20Na+/vacancy%20ordering%20in%20Na2/3Ni1/3Mn2/3O2%20by%20anion/cation%20dual-doping%20for%20fast%20and%20stable%20Na+%20insertion/extraction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Mao,%20Qianjiang&rft.date=2021-01-01&rft.volume=9&rft.issue=17&rft.spage=10803&rft.epage=10811&rft.pages=10803-10811&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta01433a&rft_dat=%3Cproquest%3E2521485605%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521485605&rft_id=info:pmid/&rfr_iscdi=true