Insight Gained from Using Machine Learning Techniques to Predict the Discharge Capacities of Doped Spinel Cathode Materials for Lithium‐Ion Batteries Applications
The electrochemical potentials of spinel lithium manganese oxide (LMO) have long been plagued by the significant Mn3+ dissolution during long cycle discharging, resulting in rapid capacity fading and short cycle life. Although the doping mechanisms are effective in suppressing these reactions, the c...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2021-05, Vol.9 (5), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 9 |
creator | Wang, Guanyu Fearn, Tom Wang, Tengyao Choy, Kwang-Leong |
description | The electrochemical potentials of spinel lithium manganese oxide (LMO) have long been plagued by the significant Mn3+ dissolution during long cycle discharging, resulting in rapid capacity fading and short cycle life. Although the doping mechanisms are effective in suppressing these reactions, the correlations of their effects on the material properties and the improved discharging performance still remain uncovered. In this study, seven machine learning (ML) methods are applied to a manually curated dataset of 102 doped LMO spinel systems to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) from fundamental system properties like material molar mass and crystal structure dimension. Gradient boosting models achieved the best prediction powers for IC and EC with their errors estimated to be 11.90 and 11.77 mAhg−1, respectively. Besides, a higher formula molar mass of doped LMO can improve both capacities and additionally, a shorter crystal lattice dimension with a dopant with smaller electronegativity can slightly improve the value of the IC and EC, respectively. This study demonstrates the great potential of using ML models to both predict the discharging performance of doped spinel cathodes and identify the governing material properties for controlling the discharging performance.
Seven machine learning methods are used to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) for a range of doped lithium‐manganese‐oxide systems based on fundamental system properties. The best performing model was found to be the gradient boosting model with the IC, EC prediction errors estimated to be 11.90 and 11.77 mAhg−1, respectively. |
doi_str_mv | 10.1002/ente.202100053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521412607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521412607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3963-c9d7db3d86b0784302826046bfe25143d24580e2865644553d387b459ed0337f3</originalsourceid><addsrcrecordid>eNqFkctKAzEUhgdRUGq3rgOuWzO5zGWpbdVCvYDtekiTM52UNhmTFHHnI_gQPplPYoZKXbo6Oed8_38If5JcpHiYYkyuwAQYEkxigzk9Ss5IWrIBI2V2fHgXxWnS934dkTRCHNOz5GtqvF41Ad0JbUCh2tktWnhtVuhByCbO0AyEM91gDrIx-nUHHgWLnh0oLQMKDaCx9rIRbgVoJFohddCRsTUa2zZ6vrTRZhNXobEKom8Ap8XGo9o6NNOh0bvt98fn1Bp0I0K3jOrrtt1oKYK2xp8nJ3Xkof9be8nidjIf3Q9mT3fT0fVsIGmZ0YEsVa6WVBXZEucFo5gUJMMsW9ZAeMqoIowXGEiR8YwxzqmiRb5kvASFKc1r2ksu976ts903Q7W2O2fiyYpwkrI02uWRGu4p6az3DuqqdXor3HuV4qoLo-rCqA5hREG5F7zpDbz_Q1eTx_nkT_sDJ5ePag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521412607</pqid></control><display><type>article</type><title>Insight Gained from Using Machine Learning Techniques to Predict the Discharge Capacities of Doped Spinel Cathode Materials for Lithium‐Ion Batteries Applications</title><source>Wiley Online Library</source><creator>Wang, Guanyu ; Fearn, Tom ; Wang, Tengyao ; Choy, Kwang-Leong</creator><creatorcontrib>Wang, Guanyu ; Fearn, Tom ; Wang, Tengyao ; Choy, Kwang-Leong</creatorcontrib><description>The electrochemical potentials of spinel lithium manganese oxide (LMO) have long been plagued by the significant Mn3+ dissolution during long cycle discharging, resulting in rapid capacity fading and short cycle life. Although the doping mechanisms are effective in suppressing these reactions, the correlations of their effects on the material properties and the improved discharging performance still remain uncovered. In this study, seven machine learning (ML) methods are applied to a manually curated dataset of 102 doped LMO spinel systems to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) from fundamental system properties like material molar mass and crystal structure dimension. Gradient boosting models achieved the best prediction powers for IC and EC with their errors estimated to be 11.90 and 11.77 mAhg−1, respectively. Besides, a higher formula molar mass of doped LMO can improve both capacities and additionally, a shorter crystal lattice dimension with a dopant with smaller electronegativity can slightly improve the value of the IC and EC, respectively. This study demonstrates the great potential of using ML models to both predict the discharging performance of doped spinel cathodes and identify the governing material properties for controlling the discharging performance.
Seven machine learning methods are used to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) for a range of doped lithium‐manganese‐oxide systems based on fundamental system properties. The best performing model was found to be the gradient boosting model with the IC, EC prediction errors estimated to be 11.90 and 11.77 mAhg−1, respectively.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202100053</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Cathodes ; Crystal lattices ; Crystal structure ; Discharge ; doped cathode materials ; Electrochemistry ; Electrode materials ; Electronegativity ; Lithium ; Lithium manganese oxides ; Lithium-ion batteries ; Machine learning ; Manganese ; Manganese oxides ; Material properties ; Spinel</subject><ispartof>Energy technology (Weinheim, Germany), 2021-05, Vol.9 (5), p.n/a</ispartof><rights>2021 The Authors. Energy Technology published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3963-c9d7db3d86b0784302826046bfe25143d24580e2865644553d387b459ed0337f3</citedby><cites>FETCH-LOGICAL-c3963-c9d7db3d86b0784302826046bfe25143d24580e2865644553d387b459ed0337f3</cites><orcidid>0000-0003-1736-5797 ; 0000-0003-2222-6601 ; 0000-0002-5596-4427 ; 0000-0003-2072-6645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.202100053$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.202100053$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wang, Guanyu</creatorcontrib><creatorcontrib>Fearn, Tom</creatorcontrib><creatorcontrib>Wang, Tengyao</creatorcontrib><creatorcontrib>Choy, Kwang-Leong</creatorcontrib><title>Insight Gained from Using Machine Learning Techniques to Predict the Discharge Capacities of Doped Spinel Cathode Materials for Lithium‐Ion Batteries Applications</title><title>Energy technology (Weinheim, Germany)</title><description>The electrochemical potentials of spinel lithium manganese oxide (LMO) have long been plagued by the significant Mn3+ dissolution during long cycle discharging, resulting in rapid capacity fading and short cycle life. Although the doping mechanisms are effective in suppressing these reactions, the correlations of their effects on the material properties and the improved discharging performance still remain uncovered. In this study, seven machine learning (ML) methods are applied to a manually curated dataset of 102 doped LMO spinel systems to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) from fundamental system properties like material molar mass and crystal structure dimension. Gradient boosting models achieved the best prediction powers for IC and EC with their errors estimated to be 11.90 and 11.77 mAhg−1, respectively. Besides, a higher formula molar mass of doped LMO can improve both capacities and additionally, a shorter crystal lattice dimension with a dopant with smaller electronegativity can slightly improve the value of the IC and EC, respectively. This study demonstrates the great potential of using ML models to both predict the discharging performance of doped spinel cathodes and identify the governing material properties for controlling the discharging performance.
Seven machine learning methods are used to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) for a range of doped lithium‐manganese‐oxide systems based on fundamental system properties. The best performing model was found to be the gradient boosting model with the IC, EC prediction errors estimated to be 11.90 and 11.77 mAhg−1, respectively.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Discharge</subject><subject>doped cathode materials</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electronegativity</subject><subject>Lithium</subject><subject>Lithium manganese oxides</subject><subject>Lithium-ion batteries</subject><subject>Machine learning</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Material properties</subject><subject>Spinel</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkctKAzEUhgdRUGq3rgOuWzO5zGWpbdVCvYDtekiTM52UNhmTFHHnI_gQPplPYoZKXbo6Oed8_38If5JcpHiYYkyuwAQYEkxigzk9Ss5IWrIBI2V2fHgXxWnS934dkTRCHNOz5GtqvF41Ad0JbUCh2tktWnhtVuhByCbO0AyEM91gDrIx-nUHHgWLnh0oLQMKDaCx9rIRbgVoJFohddCRsTUa2zZ6vrTRZhNXobEKom8Ap8XGo9o6NNOh0bvt98fn1Bp0I0K3jOrrtt1oKYK2xp8nJ3Xkof9be8nidjIf3Q9mT3fT0fVsIGmZ0YEsVa6WVBXZEucFo5gUJMMsW9ZAeMqoIowXGEiR8YwxzqmiRb5kvASFKc1r2ksu976ts903Q7W2O2fiyYpwkrI02uWRGu4p6az3DuqqdXor3HuV4qoLo-rCqA5hREG5F7zpDbz_Q1eTx_nkT_sDJ5ePag</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wang, Guanyu</creator><creator>Fearn, Tom</creator><creator>Wang, Tengyao</creator><creator>Choy, Kwang-Leong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1736-5797</orcidid><orcidid>https://orcid.org/0000-0003-2222-6601</orcidid><orcidid>https://orcid.org/0000-0002-5596-4427</orcidid><orcidid>https://orcid.org/0000-0003-2072-6645</orcidid></search><sort><creationdate>202105</creationdate><title>Insight Gained from Using Machine Learning Techniques to Predict the Discharge Capacities of Doped Spinel Cathode Materials for Lithium‐Ion Batteries Applications</title><author>Wang, Guanyu ; Fearn, Tom ; Wang, Tengyao ; Choy, Kwang-Leong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3963-c9d7db3d86b0784302826046bfe25143d24580e2865644553d387b459ed0337f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Discharge</topic><topic>doped cathode materials</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electronegativity</topic><topic>Lithium</topic><topic>Lithium manganese oxides</topic><topic>Lithium-ion batteries</topic><topic>Machine learning</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Material properties</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guanyu</creatorcontrib><creatorcontrib>Fearn, Tom</creatorcontrib><creatorcontrib>Wang, Tengyao</creatorcontrib><creatorcontrib>Choy, Kwang-Leong</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guanyu</au><au>Fearn, Tom</au><au>Wang, Tengyao</au><au>Choy, Kwang-Leong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight Gained from Using Machine Learning Techniques to Predict the Discharge Capacities of Doped Spinel Cathode Materials for Lithium‐Ion Batteries Applications</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2021-05</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>The electrochemical potentials of spinel lithium manganese oxide (LMO) have long been plagued by the significant Mn3+ dissolution during long cycle discharging, resulting in rapid capacity fading and short cycle life. Although the doping mechanisms are effective in suppressing these reactions, the correlations of their effects on the material properties and the improved discharging performance still remain uncovered. In this study, seven machine learning (ML) methods are applied to a manually curated dataset of 102 doped LMO spinel systems to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) from fundamental system properties like material molar mass and crystal structure dimension. Gradient boosting models achieved the best prediction powers for IC and EC with their errors estimated to be 11.90 and 11.77 mAhg−1, respectively. Besides, a higher formula molar mass of doped LMO can improve both capacities and additionally, a shorter crystal lattice dimension with a dopant with smaller electronegativity can slightly improve the value of the IC and EC, respectively. This study demonstrates the great potential of using ML models to both predict the discharging performance of doped spinel cathodes and identify the governing material properties for controlling the discharging performance.
Seven machine learning methods are used to predict the initial discharge capacities (IC) and 20th cycle end discharge capacities (EC) for a range of doped lithium‐manganese‐oxide systems based on fundamental system properties. The best performing model was found to be the gradient boosting model with the IC, EC prediction errors estimated to be 11.90 and 11.77 mAhg−1, respectively.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202100053</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1736-5797</orcidid><orcidid>https://orcid.org/0000-0003-2222-6601</orcidid><orcidid>https://orcid.org/0000-0002-5596-4427</orcidid><orcidid>https://orcid.org/0000-0003-2072-6645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2021-05, Vol.9 (5), p.n/a |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_2521412607 |
source | Wiley Online Library |
subjects | Batteries Cathodes Crystal lattices Crystal structure Discharge doped cathode materials Electrochemistry Electrode materials Electronegativity Lithium Lithium manganese oxides Lithium-ion batteries Machine learning Manganese Manganese oxides Material properties Spinel |
title | Insight Gained from Using Machine Learning Techniques to Predict the Discharge Capacities of Doped Spinel Cathode Materials for Lithium‐Ion Batteries Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20Gained%20from%20Using%20Machine%20Learning%20Techniques%20to%20Predict%20the%20Discharge%20Capacities%20of%20Doped%20Spinel%20Cathode%20Materials%20for%20Lithium%E2%80%90Ion%20Batteries%20Applications&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Wang,%20Guanyu&rft.date=2021-05&rft.volume=9&rft.issue=5&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202100053&rft_dat=%3Cproquest_cross%3E2521412607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521412607&rft_id=info:pmid/&rfr_iscdi=true |