Equivariant bundles and absorption

For a locally compact group \(G\) and a strongly self-absorbing \(G\)-algebra \((\mathcal{D},\delta)\), we obtain a new characterization of absorption of a strongly self-absorbing action using almost equivariant completely positive maps into the underlying algebra. The main technical tool to obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: ough, Marzieh, Gardella, Eusebio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator ough, Marzieh
Gardella, Eusebio
description For a locally compact group \(G\) and a strongly self-absorbing \(G\)-algebra \((\mathcal{D},\delta)\), we obtain a new characterization of absorption of a strongly self-absorbing action using almost equivariant completely positive maps into the underlying algebra. The main technical tool to obtain this characterization is the existence of almost equivariant lifts for equivariant completely positive maps, proved in recent work of the authors. This characterization is then used to show that an equivariant \(C_0(X)\)-algebra with \(\mathrm{dim}_{\mathrm{cov}}(X)
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2521275635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521275635</sourcerecordid><originalsourceid>FETCH-proquest_journals_25212756353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQci0szSxLLMpMzCtRSCrNS8lJLVZIzEtRSEwqzi8qKMnMz-NhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjUyNDI3NTM2NTY-JUAQCMzS49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521275635</pqid></control><display><type>article</type><title>Equivariant bundles and absorption</title><source>Free E- Journals</source><creator>ough, Marzieh ; Gardella, Eusebio</creator><creatorcontrib>ough, Marzieh ; Gardella, Eusebio</creatorcontrib><description>For a locally compact group \(G\) and a strongly self-absorbing \(G\)-algebra \((\mathcal{D},\delta)\), we obtain a new characterization of absorption of a strongly self-absorbing action using almost equivariant completely positive maps into the underlying algebra. The main technical tool to obtain this characterization is the existence of almost equivariant lifts for equivariant completely positive maps, proved in recent work of the authors. This characterization is then used to show that an equivariant \(C_0(X)\)-algebra with \(\mathrm{dim}_{\mathrm{cov}}(X)&lt;\infty\) is \((\mathcal{D},\delta)\)-stable if and only if all of its fibers are, extending a result of Hirshberg, Rørdam and Winter to the equivariant setting. The condition on the dimension of \(X\) is known to be necessary, and we show that it can be removed if, for example, the bundle is locally trivial.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Absorption ; Algebra</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>ough, Marzieh</creatorcontrib><creatorcontrib>Gardella, Eusebio</creatorcontrib><title>Equivariant bundles and absorption</title><title>arXiv.org</title><description>For a locally compact group \(G\) and a strongly self-absorbing \(G\)-algebra \((\mathcal{D},\delta)\), we obtain a new characterization of absorption of a strongly self-absorbing action using almost equivariant completely positive maps into the underlying algebra. The main technical tool to obtain this characterization is the existence of almost equivariant lifts for equivariant completely positive maps, proved in recent work of the authors. This characterization is then used to show that an equivariant \(C_0(X)\)-algebra with \(\mathrm{dim}_{\mathrm{cov}}(X)&lt;\infty\) is \((\mathcal{D},\delta)\)-stable if and only if all of its fibers are, extending a result of Hirshberg, Rørdam and Winter to the equivariant setting. The condition on the dimension of \(X\) is known to be necessary, and we show that it can be removed if, for example, the bundle is locally trivial.</description><subject>Absorption</subject><subject>Algebra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQci0szSxLLMpMzCtRSCrNS8lJLVZIzEtRSEwqzi8qKMnMz-NhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjUyNDI3NTM2NTY-JUAQCMzS49</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>ough, Marzieh</creator><creator>Gardella, Eusebio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210611</creationdate><title>Equivariant bundles and absorption</title><author>ough, Marzieh ; Gardella, Eusebio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25212756353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Algebra</topic><toplevel>online_resources</toplevel><creatorcontrib>ough, Marzieh</creatorcontrib><creatorcontrib>Gardella, Eusebio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ough, Marzieh</au><au>Gardella, Eusebio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Equivariant bundles and absorption</atitle><jtitle>arXiv.org</jtitle><date>2021-06-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>For a locally compact group \(G\) and a strongly self-absorbing \(G\)-algebra \((\mathcal{D},\delta)\), we obtain a new characterization of absorption of a strongly self-absorbing action using almost equivariant completely positive maps into the underlying algebra. The main technical tool to obtain this characterization is the existence of almost equivariant lifts for equivariant completely positive maps, proved in recent work of the authors. This characterization is then used to show that an equivariant \(C_0(X)\)-algebra with \(\mathrm{dim}_{\mathrm{cov}}(X)&lt;\infty\) is \((\mathcal{D},\delta)\)-stable if and only if all of its fibers are, extending a result of Hirshberg, Rørdam and Winter to the equivariant setting. The condition on the dimension of \(X\) is known to be necessary, and we show that it can be removed if, for example, the bundle is locally trivial.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2521275635
source Free E- Journals
subjects Absorption
Algebra
title Equivariant bundles and absorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Equivariant%20bundles%20and%20absorption&rft.jtitle=arXiv.org&rft.au=ough,%20Marzieh&rft.date=2021-06-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2521275635%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521275635&rft_id=info:pmid/&rfr_iscdi=true