Functional brain network dynamics based on the Hindmarsh–Rose model

In order to reveal the dynamics of brain network, we proposed a new research method based on the Hindmarsh–Rose model. In the method, a neural network model was developed by constructing a functional brain network topology based on functional magnetic resonance imaging resting-state data and using H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-04, Vol.104 (2), p.1475-1489
Hauptverfasser: Lv, Guiyang, Zhang, Nayue, Ma, Kexin, Weng, Jian, Zhu, Ping, Chen, Feiyan, He, Guoguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 2
container_start_page 1475
container_title Nonlinear dynamics
container_volume 104
creator Lv, Guiyang
Zhang, Nayue
Ma, Kexin
Weng, Jian
Zhu, Ping
Chen, Feiyan
He, Guoguang
description In order to reveal the dynamics of brain network, we proposed a new research method based on the Hindmarsh–Rose model. In the method, a neural network model was developed by constructing a functional brain network topology based on functional magnetic resonance imaging resting-state data and using Hindmarsh–Rose neurons as nodes in place of the brain regions belonging to the functional brain network. The dynamics of the functional brain network were investigated using the dynamics model. The simulation results showed that the dynamic behaviors of the brain regions in the functional brain network could be divided into three types: stable, chaotic, and periodical bursts. A state space was introduced to analyze the dynamic behavior of the brain regions in the network. We find that increasing excitation and mutual connection strength among brain regions enhanced network communication capabilities in the state space. Both the periodic and stable modes exhibited stronger communication capabilities than the chaotic mode. Despite individual differences in the dynamics of brain regions among subjects, brain regions in the periodic mode were highly consistent and corresponded to key regions of the default mode network in the resting state.
doi_str_mv 10.1007/s11071-021-06318-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521265255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521265255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c215e5a40b031b0859d8774008630b123c7765617be154443bc5a5cc6e13b2d73</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4CrgevS9ZDKZWUpprVAQRKG7kGRSO7VNajJFuvMf-od-iaMjuHPxeJt7LpdDyCXCNQLIm4QIEjNg3RUcywyPyACF5BkrqvkxGUDF8gwqmJ-Ss5RWAMAZlAMynuy8bZvg9ZqaqBtPvWvfQ3yl9d7rTWMTNTq5mgZP26Wj08bXGx3T8vPj8BiSo5tQu_U5OVnodXIXv39Inifjp9E0mz3c3Y9uZ5nlWLWZZSic0DkY4GigFFVdSpkDlAUHg4xbKQtRoDQORZ7n3FihhbWFQ25YLfmQXPW92xjedi61ahV2sdueFBMMWSGYEF2K9SkbQ0rRLdQ2Nt3ovUJQ37pUr0t1utSPLoUdxHsodWH_4uJf9T_UF6ijbJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521265255</pqid></control><display><type>article</type><title>Functional brain network dynamics based on the Hindmarsh–Rose model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lv, Guiyang ; Zhang, Nayue ; Ma, Kexin ; Weng, Jian ; Zhu, Ping ; Chen, Feiyan ; He, Guoguang</creator><creatorcontrib>Lv, Guiyang ; Zhang, Nayue ; Ma, Kexin ; Weng, Jian ; Zhu, Ping ; Chen, Feiyan ; He, Guoguang</creatorcontrib><description>In order to reveal the dynamics of brain network, we proposed a new research method based on the Hindmarsh–Rose model. In the method, a neural network model was developed by constructing a functional brain network topology based on functional magnetic resonance imaging resting-state data and using Hindmarsh–Rose neurons as nodes in place of the brain regions belonging to the functional brain network. The dynamics of the functional brain network were investigated using the dynamics model. The simulation results showed that the dynamic behaviors of the brain regions in the functional brain network could be divided into three types: stable, chaotic, and periodical bursts. A state space was introduced to analyze the dynamic behavior of the brain regions in the network. We find that increasing excitation and mutual connection strength among brain regions enhanced network communication capabilities in the state space. Both the periodic and stable modes exhibited stronger communication capabilities than the chaotic mode. Despite individual differences in the dynamics of brain regions among subjects, brain regions in the periodic mode were highly consistent and corresponded to key regions of the default mode network in the resting state.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06318-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Brain ; Classical Mechanics ; Control ; Dynamical Systems ; Dynamics ; Engineering ; Magnetic resonance imaging ; Mechanical Engineering ; Network topologies ; Neural networks ; Original Paper ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-04, Vol.104 (2), p.1475-1489</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c215e5a40b031b0859d8774008630b123c7765617be154443bc5a5cc6e13b2d73</citedby><cites>FETCH-LOGICAL-c319t-c215e5a40b031b0859d8774008630b123c7765617be154443bc5a5cc6e13b2d73</cites><orcidid>0000-0001-8031-9836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06318-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06318-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Lv, Guiyang</creatorcontrib><creatorcontrib>Zhang, Nayue</creatorcontrib><creatorcontrib>Ma, Kexin</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Chen, Feiyan</creatorcontrib><creatorcontrib>He, Guoguang</creatorcontrib><title>Functional brain network dynamics based on the Hindmarsh–Rose model</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In order to reveal the dynamics of brain network, we proposed a new research method based on the Hindmarsh–Rose model. In the method, a neural network model was developed by constructing a functional brain network topology based on functional magnetic resonance imaging resting-state data and using Hindmarsh–Rose neurons as nodes in place of the brain regions belonging to the functional brain network. The dynamics of the functional brain network were investigated using the dynamics model. The simulation results showed that the dynamic behaviors of the brain regions in the functional brain network could be divided into three types: stable, chaotic, and periodical bursts. A state space was introduced to analyze the dynamic behavior of the brain regions in the network. We find that increasing excitation and mutual connection strength among brain regions enhanced network communication capabilities in the state space. Both the periodic and stable modes exhibited stronger communication capabilities than the chaotic mode. Despite individual differences in the dynamics of brain regions among subjects, brain regions in the periodic mode were highly consistent and corresponded to key regions of the default mode network in the resting state.</description><subject>Automotive Engineering</subject><subject>Brain</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Magnetic resonance imaging</subject><subject>Mechanical Engineering</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4CrgevS9ZDKZWUpprVAQRKG7kGRSO7VNajJFuvMf-od-iaMjuHPxeJt7LpdDyCXCNQLIm4QIEjNg3RUcywyPyACF5BkrqvkxGUDF8gwqmJ-Ss5RWAMAZlAMynuy8bZvg9ZqaqBtPvWvfQ3yl9d7rTWMTNTq5mgZP26Wj08bXGx3T8vPj8BiSo5tQu_U5OVnodXIXv39Inifjp9E0mz3c3Y9uZ5nlWLWZZSic0DkY4GigFFVdSpkDlAUHg4xbKQtRoDQORZ7n3FihhbWFQ25YLfmQXPW92xjedi61ahV2sdueFBMMWSGYEF2K9SkbQ0rRLdQ2Nt3ovUJQ37pUr0t1utSPLoUdxHsodWH_4uJf9T_UF6ijbJk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Lv, Guiyang</creator><creator>Zhang, Nayue</creator><creator>Ma, Kexin</creator><creator>Weng, Jian</creator><creator>Zhu, Ping</creator><creator>Chen, Feiyan</creator><creator>He, Guoguang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8031-9836</orcidid></search><sort><creationdate>20210401</creationdate><title>Functional brain network dynamics based on the Hindmarsh–Rose model</title><author>Lv, Guiyang ; Zhang, Nayue ; Ma, Kexin ; Weng, Jian ; Zhu, Ping ; Chen, Feiyan ; He, Guoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c215e5a40b031b0859d8774008630b123c7765617be154443bc5a5cc6e13b2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Brain</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Magnetic resonance imaging</topic><topic>Mechanical Engineering</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Guiyang</creatorcontrib><creatorcontrib>Zhang, Nayue</creatorcontrib><creatorcontrib>Ma, Kexin</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Chen, Feiyan</creatorcontrib><creatorcontrib>He, Guoguang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Guiyang</au><au>Zhang, Nayue</au><au>Ma, Kexin</au><au>Weng, Jian</au><au>Zhu, Ping</au><au>Chen, Feiyan</au><au>He, Guoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional brain network dynamics based on the Hindmarsh–Rose model</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>104</volume><issue>2</issue><spage>1475</spage><epage>1489</epage><pages>1475-1489</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In order to reveal the dynamics of brain network, we proposed a new research method based on the Hindmarsh–Rose model. In the method, a neural network model was developed by constructing a functional brain network topology based on functional magnetic resonance imaging resting-state data and using Hindmarsh–Rose neurons as nodes in place of the brain regions belonging to the functional brain network. The dynamics of the functional brain network were investigated using the dynamics model. The simulation results showed that the dynamic behaviors of the brain regions in the functional brain network could be divided into three types: stable, chaotic, and periodical bursts. A state space was introduced to analyze the dynamic behavior of the brain regions in the network. We find that increasing excitation and mutual connection strength among brain regions enhanced network communication capabilities in the state space. Both the periodic and stable modes exhibited stronger communication capabilities than the chaotic mode. Despite individual differences in the dynamics of brain regions among subjects, brain regions in the periodic mode were highly consistent and corresponded to key regions of the default mode network in the resting state.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06318-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8031-9836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-04, Vol.104 (2), p.1475-1489
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2521265255
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Brain
Classical Mechanics
Control
Dynamical Systems
Dynamics
Engineering
Magnetic resonance imaging
Mechanical Engineering
Network topologies
Neural networks
Original Paper
Vibration
title Functional brain network dynamics based on the Hindmarsh–Rose model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20brain%20network%20dynamics%20based%20on%20the%20Hindmarsh%E2%80%93Rose%20model&rft.jtitle=Nonlinear%20dynamics&rft.au=Lv,%20Guiyang&rft.date=2021-04-01&rft.volume=104&rft.issue=2&rft.spage=1475&rft.epage=1489&rft.pages=1475-1489&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06318-1&rft_dat=%3Cproquest_cross%3E2521265255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521265255&rft_id=info:pmid/&rfr_iscdi=true