MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging
•We propose a new robust multi-view image tagging method via the MCC-based framework.•We use a diversity regularization term to promote complementary information.•The proposed clustering method finds clusters with no additional clustering step.•A compelling fusion technique with the combination of e...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2021-07, Vol.173, p.114657, Article 114657 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114657 |
container_title | Expert systems with applications |
container_volume | 173 |
creator | Zamiri, Mona Bahraini, Tahereh Yazdi, Hadi Sadoghi |
description | •We propose a new robust multi-view image tagging method via the MCC-based framework.•We use a diversity regularization term to promote complementary information.•The proposed clustering method finds clusters with no additional clustering step.•A compelling fusion technique with the combination of early and late fusion is used.•Geographical information is used to enhance the performance of the model.
Image tag recommendation, aiming at assigning a set of relevant tags for images, is a useful way to help users organize images’ content. Early methods in image tagging mainly demonstrated using low-level visual features. However, two visually similar photos may have different concepts (semantic gap). Although different multi-view tagging methods are proposed to learn the discriminative features, they usually do not consider the geographical correlation among images. Moreover, geographical-based image tagging models generally focused on the relevance criterion, i.e., how well the suggested tags describe image content. Diversity and redundancy should be controlled to guarantee the recommendation models’ effectiveness and promote complementary information among tags. This paper proposes a robust multi-view image tagging method, termed MVDF-RSC, which considers the relevance, diversity, and redundancy criteria. Precisely, the proposed method consists of two phases: training and prediction. We propose a new robust optimization problem in the training phase to determine the similarity between data via the early fusion of multiple views of images and obtain clusters. In the prediction phase, relevant tags are recommended to each test data using a search-based method and a late fusion strategy. Comprehensive experiments on two geo-tagged image datasets demonstrate the proposed method’s effectiveness over state-of-the-art alternatives. |
doi_str_mv | 10.1016/j.eswa.2021.114657 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2521112946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421000981</els_id><sourcerecordid>2521112946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-5c173fa85473195d97168d5ad219e6381bc52bd24f8f6a63a7b9f517c0d6dddc3</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoOD_-AZ8CPqfmpk3Sii8ynQobgl9PQsiStGTUdSbthv-9KfPZp8vhnnPv4YfQBdAMKIirVebiTmeMMsgACsHlAZpAKXMiZJUfogmtuCQFyOIYncS4ohQkpXKCPhcfdzPy8jq9xouh7T3ZerfDVvca10P03RpvvcahWw6xx3HjTB90i02bpAt-3eC6C7hxHel10ziL_ZduHB5FWp6ho1q30Z3_zVP0Prt_mz6S-fPD0_R2TkzOyp5wAzKvdckLmUPFbSVBlJZry6ByIi9haThbWlbUZS20yLVcVjUHaagV1lqTn6LL_d1N6L4HF3u16oawTi8V4wwAWFWI5GJ7lwldjMHVahNS3fCjgKqRolqpkaIaKao9xRS62Ydc6p_YBBWNd2vjrA8JhrKd_y_-CzzDepI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521112946</pqid></control><display><type>article</type><title>MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zamiri, Mona ; Bahraini, Tahereh ; Yazdi, Hadi Sadoghi</creator><creatorcontrib>Zamiri, Mona ; Bahraini, Tahereh ; Yazdi, Hadi Sadoghi</creatorcontrib><description>•We propose a new robust multi-view image tagging method via the MCC-based framework.•We use a diversity regularization term to promote complementary information.•The proposed clustering method finds clusters with no additional clustering step.•A compelling fusion technique with the combination of early and late fusion is used.•Geographical information is used to enhance the performance of the model.
Image tag recommendation, aiming at assigning a set of relevant tags for images, is a useful way to help users organize images’ content. Early methods in image tagging mainly demonstrated using low-level visual features. However, two visually similar photos may have different concepts (semantic gap). Although different multi-view tagging methods are proposed to learn the discriminative features, they usually do not consider the geographical correlation among images. Moreover, geographical-based image tagging models generally focused on the relevance criterion, i.e., how well the suggested tags describe image content. Diversity and redundancy should be controlled to guarantee the recommendation models’ effectiveness and promote complementary information among tags. This paper proposes a robust multi-view image tagging method, termed MVDF-RSC, which considers the relevance, diversity, and redundancy criteria. Precisely, the proposed method consists of two phases: training and prediction. We propose a new robust optimization problem in the training phase to determine the similarity between data via the early fusion of multiple views of images and obtain clusters. In the prediction phase, relevant tags are recommended to each test data using a search-based method and a late fusion strategy. Comprehensive experiments on two geo-tagged image datasets demonstrate the proposed method’s effectiveness over state-of-the-art alternatives.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.114657</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Clustering ; Data integration ; Data search ; Geo-tagged photos ; Geographical information ; Image annotation ; Image tagging ; Marking ; Multi-view spectral clustering ; Optimization ; Recommender systems ; Redundancy ; Robustness ; Tags ; Training</subject><ispartof>Expert systems with applications, 2021-07, Vol.173, p.114657, Article 114657</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-5c173fa85473195d97168d5ad219e6381bc52bd24f8f6a63a7b9f517c0d6dddc3</citedby><cites>FETCH-LOGICAL-c328t-5c173fa85473195d97168d5ad219e6381bc52bd24f8f6a63a7b9f517c0d6dddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2021.114657$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zamiri, Mona</creatorcontrib><creatorcontrib>Bahraini, Tahereh</creatorcontrib><creatorcontrib>Yazdi, Hadi Sadoghi</creatorcontrib><title>MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging</title><title>Expert systems with applications</title><description>•We propose a new robust multi-view image tagging method via the MCC-based framework.•We use a diversity regularization term to promote complementary information.•The proposed clustering method finds clusters with no additional clustering step.•A compelling fusion technique with the combination of early and late fusion is used.•Geographical information is used to enhance the performance of the model.
Image tag recommendation, aiming at assigning a set of relevant tags for images, is a useful way to help users organize images’ content. Early methods in image tagging mainly demonstrated using low-level visual features. However, two visually similar photos may have different concepts (semantic gap). Although different multi-view tagging methods are proposed to learn the discriminative features, they usually do not consider the geographical correlation among images. Moreover, geographical-based image tagging models generally focused on the relevance criterion, i.e., how well the suggested tags describe image content. Diversity and redundancy should be controlled to guarantee the recommendation models’ effectiveness and promote complementary information among tags. This paper proposes a robust multi-view image tagging method, termed MVDF-RSC, which considers the relevance, diversity, and redundancy criteria. Precisely, the proposed method consists of two phases: training and prediction. We propose a new robust optimization problem in the training phase to determine the similarity between data via the early fusion of multiple views of images and obtain clusters. In the prediction phase, relevant tags are recommended to each test data using a search-based method and a late fusion strategy. Comprehensive experiments on two geo-tagged image datasets demonstrate the proposed method’s effectiveness over state-of-the-art alternatives.</description><subject>Clustering</subject><subject>Data integration</subject><subject>Data search</subject><subject>Geo-tagged photos</subject><subject>Geographical information</subject><subject>Image annotation</subject><subject>Image tagging</subject><subject>Marking</subject><subject>Multi-view spectral clustering</subject><subject>Optimization</subject><subject>Recommender systems</subject><subject>Redundancy</subject><subject>Robustness</subject><subject>Tags</subject><subject>Training</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYMoOD_-AZ8CPqfmpk3Sii8ynQobgl9PQsiStGTUdSbthv-9KfPZp8vhnnPv4YfQBdAMKIirVebiTmeMMsgACsHlAZpAKXMiZJUfogmtuCQFyOIYncS4ohQkpXKCPhcfdzPy8jq9xouh7T3ZerfDVvca10P03RpvvcahWw6xx3HjTB90i02bpAt-3eC6C7hxHel10ziL_ZduHB5FWp6ho1q30Z3_zVP0Prt_mz6S-fPD0_R2TkzOyp5wAzKvdckLmUPFbSVBlJZry6ByIi9haThbWlbUZS20yLVcVjUHaagV1lqTn6LL_d1N6L4HF3u16oawTi8V4wwAWFWI5GJ7lwldjMHVahNS3fCjgKqRolqpkaIaKao9xRS62Ydc6p_YBBWNd2vjrA8JhrKd_y_-CzzDepI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zamiri, Mona</creator><creator>Bahraini, Tahereh</creator><creator>Yazdi, Hadi Sadoghi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210701</creationdate><title>MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging</title><author>Zamiri, Mona ; Bahraini, Tahereh ; Yazdi, Hadi Sadoghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-5c173fa85473195d97168d5ad219e6381bc52bd24f8f6a63a7b9f517c0d6dddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Data integration</topic><topic>Data search</topic><topic>Geo-tagged photos</topic><topic>Geographical information</topic><topic>Image annotation</topic><topic>Image tagging</topic><topic>Marking</topic><topic>Multi-view spectral clustering</topic><topic>Optimization</topic><topic>Recommender systems</topic><topic>Redundancy</topic><topic>Robustness</topic><topic>Tags</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamiri, Mona</creatorcontrib><creatorcontrib>Bahraini, Tahereh</creatorcontrib><creatorcontrib>Yazdi, Hadi Sadoghi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamiri, Mona</au><au>Bahraini, Tahereh</au><au>Yazdi, Hadi Sadoghi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging</atitle><jtitle>Expert systems with applications</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>173</volume><spage>114657</spage><pages>114657-</pages><artnum>114657</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•We propose a new robust multi-view image tagging method via the MCC-based framework.•We use a diversity regularization term to promote complementary information.•The proposed clustering method finds clusters with no additional clustering step.•A compelling fusion technique with the combination of early and late fusion is used.•Geographical information is used to enhance the performance of the model.
Image tag recommendation, aiming at assigning a set of relevant tags for images, is a useful way to help users organize images’ content. Early methods in image tagging mainly demonstrated using low-level visual features. However, two visually similar photos may have different concepts (semantic gap). Although different multi-view tagging methods are proposed to learn the discriminative features, they usually do not consider the geographical correlation among images. Moreover, geographical-based image tagging models generally focused on the relevance criterion, i.e., how well the suggested tags describe image content. Diversity and redundancy should be controlled to guarantee the recommendation models’ effectiveness and promote complementary information among tags. This paper proposes a robust multi-view image tagging method, termed MVDF-RSC, which considers the relevance, diversity, and redundancy criteria. Precisely, the proposed method consists of two phases: training and prediction. We propose a new robust optimization problem in the training phase to determine the similarity between data via the early fusion of multiple views of images and obtain clusters. In the prediction phase, relevant tags are recommended to each test data using a search-based method and a late fusion strategy. Comprehensive experiments on two geo-tagged image datasets demonstrate the proposed method’s effectiveness over state-of-the-art alternatives.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.114657</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2021-07, Vol.173, p.114657, Article 114657 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2521112946 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Clustering Data integration Data search Geo-tagged photos Geographical information Image annotation Image tagging Marking Multi-view spectral clustering Optimization Recommender systems Redundancy Robustness Tags Training |
title | MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MVDF-RSC:%20Multi-view%20data%20fusion%20via%20robust%20spectral%20clustering%20for%20geo-tagged%20image%20tagging&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Zamiri,%20Mona&rft.date=2021-07-01&rft.volume=173&rft.spage=114657&rft.pages=114657-&rft.artnum=114657&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.114657&rft_dat=%3Cproquest_cross%3E2521112946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521112946&rft_id=info:pmid/&rft_els_id=S0957417421000981&rfr_iscdi=true |