Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V

The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, and vanadium from their oxides are studied using thermodynamic modeling and differential thermal (DTA) and X-ray diffraction phase analysis. Using computer thermodynamic modeling made it possibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of non-ferrous metals 2021-03, Vol.62 (2), p.190-196
Hauptverfasser: Balakirev, V. F., Osinkina, T. V., Krasikov, S. A., Zhilina, E. M., Vedmid’, L. B., Zhidovinova, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 190
container_title Russian journal of non-ferrous metals
container_volume 62
creator Balakirev, V. F.
Osinkina, T. V.
Krasikov, S. A.
Zhilina, E. M.
Vedmid’, L. B.
Zhidovinova, S. V.
description The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, and vanadium from their oxides are studied using thermodynamic modeling and differential thermal (DTA) and X-ray diffraction phase analysis. Using computer thermodynamic modeling made it possible to predict the optimal temperature conditions in the metallothermic process, the composition and ratio of the reagents in the charge, the behavior of the elements, and the sequence of the phase formation. To identify the kinetic and thermochemical components of the process, thermodynamic calculations are supplemented by differential thermal studies using combined scanning calorimetry. An analysis of the theoretical and experimental data shows that the interaction of aluminum with titanium dioxide proceeds through the stage of formation of titanium monoxide and results in the formation of Ti x Al y intermetallic compounds of various compositions (TiAl 3 , TiAl, and Ti 2 Al) depending on the Al to TiO 2 ratio in the batch. When titanium dioxide is partially replaced by niobium, tantalum, and vanadium oxides, the metallothermic process under interactions in the Al–TiO 2 –Nb 2 O 5 , Al–TiO 2 –Ta 2 O 5 , and Al–TiO 2 –V 2 O 5 systems is of the similar character; enters the active phase after the formation of liquid aluminum; is accompanied by exothermic effects; and is characterized by the priority formation of titanium aluminides and binary and ternary intermetallic aluminum compounds with rare refractory metals of group V such as AlNb 3 , Al 3 Nb, Al 3 Ta, Al 3 (Ti 1 –  х ,Ta х ), Al 3 (Ti,Ta), and Al 3 (Ti 0.8 V 0.2 ). The joint conversion of titanium dioxide and rare refractory metal pentoxides during the reduction process is affected through sequential and parallel stages of the formation of simple and complex element oxides with low oxidation states.
doi_str_mv 10.3103/S1067821221020024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520938263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520938263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-39ed2f022a16ab22505242d7a4f0be47e96485451dabc2cb9c1fb0cfce3037df3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pkstltjlK0KhWlVvG2ZLOJbmk3Ncke-u9NWcGDeJph3vfewCPknMElZ8CvXhgU5QQZIgMEwPyAjJjkeSZLeD9Me5KzvX5MTkJYAQghhRyR5wfXdpE-mqjWaxc_jd-0mi5M0-vYuo46S5dtVF3bb6jqGrpQ3iTZeqWj87vBGPbYzLt-S99OyZFNF3P2M8fk9fZmOb3L5k-z--n1PNOcFTHj0jRoAVGxQtWIAgTm2JQqt1CbvDSyyCciF6xRtUZdS81sDdpqw4GXjeVjcjHkbr376k2I1cr1vksvKxQIkk-w4IliA6W9C8EbW219u1F-VzGo9sVVf4pLHhw8IbHdh_G_yf-bvgFvqW7a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520938263</pqid></control><display><type>article</type><title>Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V</title><source>SpringerLink Journals</source><creator>Balakirev, V. F. ; Osinkina, T. V. ; Krasikov, S. A. ; Zhilina, E. M. ; Vedmid’, L. B. ; Zhidovinova, S. V.</creator><creatorcontrib>Balakirev, V. F. ; Osinkina, T. V. ; Krasikov, S. A. ; Zhilina, E. M. ; Vedmid’, L. B. ; Zhidovinova, S. V.</creatorcontrib><description>The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, and vanadium from their oxides are studied using thermodynamic modeling and differential thermal (DTA) and X-ray diffraction phase analysis. Using computer thermodynamic modeling made it possible to predict the optimal temperature conditions in the metallothermic process, the composition and ratio of the reagents in the charge, the behavior of the elements, and the sequence of the phase formation. To identify the kinetic and thermochemical components of the process, thermodynamic calculations are supplemented by differential thermal studies using combined scanning calorimetry. An analysis of the theoretical and experimental data shows that the interaction of aluminum with titanium dioxide proceeds through the stage of formation of titanium monoxide and results in the formation of Ti x Al y intermetallic compounds of various compositions (TiAl 3 , TiAl, and Ti 2 Al) depending on the Al to TiO 2 ratio in the batch. When titanium dioxide is partially replaced by niobium, tantalum, and vanadium oxides, the metallothermic process under interactions in the Al–TiO 2 –Nb 2 O 5 , Al–TiO 2 –Ta 2 O 5 , and Al–TiO 2 –V 2 O 5 systems is of the similar character; enters the active phase after the formation of liquid aluminum; is accompanied by exothermic effects; and is characterized by the priority formation of titanium aluminides and binary and ternary intermetallic aluminum compounds with rare refractory metals of group V such as AlNb 3 , Al 3 Nb, Al 3 Ta, Al 3 (Ti 1 –  х ,Ta х ), Al 3 (Ti,Ta), and Al 3 (Ti 0.8 V 0.2 ). The joint conversion of titanium dioxide and rare refractory metal pentoxides during the reduction process is affected through sequential and parallel stages of the formation of simple and complex element oxides with low oxidation states.</description><identifier>ISSN: 1067-8212</identifier><identifier>EISSN: 1934-970X</identifier><identifier>DOI: 10.3103/S1067821221020024</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminothermic reduction ; Aluminum compounds ; Chemistry and Materials Science ; Composition ; Differential thermal analysis ; Intermetallic compounds ; Materials Science ; Metallic Materials ; Modelling ; Niobium oxides ; Oxidation ; Physical Metallurgy and Heat Treatment ; Reagents ; Reduction (metal working) ; Refractory metals ; Tantalum ; Tantalum oxides ; Thermodynamic models ; Titanium ; Titanium aluminides ; Titanium base alloys ; Titanium dioxide ; Titanium oxides ; Vanadium oxides</subject><ispartof>Russian journal of non-ferrous metals, 2021-03, Vol.62 (2), p.190-196</ispartof><rights>Allerton Press, Inc. 2021. ISSN 1067-8212, Russian Journal of Non-Ferrous Metals, 2021, Vol. 62, No. 2, pp. 190–196. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2021, No. 1, pp. 57–65.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-39ed2f022a16ab22505242d7a4f0be47e96485451dabc2cb9c1fb0cfce3037df3</citedby><cites>FETCH-LOGICAL-c316t-39ed2f022a16ab22505242d7a4f0be47e96485451dabc2cb9c1fb0cfce3037df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1067821221020024$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1067821221020024$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Balakirev, V. F.</creatorcontrib><creatorcontrib>Osinkina, T. V.</creatorcontrib><creatorcontrib>Krasikov, S. A.</creatorcontrib><creatorcontrib>Zhilina, E. M.</creatorcontrib><creatorcontrib>Vedmid’, L. B.</creatorcontrib><creatorcontrib>Zhidovinova, S. V.</creatorcontrib><title>Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V</title><title>Russian journal of non-ferrous metals</title><addtitle>Russ. J. Non-ferrous Metals</addtitle><description>The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, and vanadium from their oxides are studied using thermodynamic modeling and differential thermal (DTA) and X-ray diffraction phase analysis. Using computer thermodynamic modeling made it possible to predict the optimal temperature conditions in the metallothermic process, the composition and ratio of the reagents in the charge, the behavior of the elements, and the sequence of the phase formation. To identify the kinetic and thermochemical components of the process, thermodynamic calculations are supplemented by differential thermal studies using combined scanning calorimetry. An analysis of the theoretical and experimental data shows that the interaction of aluminum with titanium dioxide proceeds through the stage of formation of titanium monoxide and results in the formation of Ti x Al y intermetallic compounds of various compositions (TiAl 3 , TiAl, and Ti 2 Al) depending on the Al to TiO 2 ratio in the batch. When titanium dioxide is partially replaced by niobium, tantalum, and vanadium oxides, the metallothermic process under interactions in the Al–TiO 2 –Nb 2 O 5 , Al–TiO 2 –Ta 2 O 5 , and Al–TiO 2 –V 2 O 5 systems is of the similar character; enters the active phase after the formation of liquid aluminum; is accompanied by exothermic effects; and is characterized by the priority formation of titanium aluminides and binary and ternary intermetallic aluminum compounds with rare refractory metals of group V such as AlNb 3 , Al 3 Nb, Al 3 Ta, Al 3 (Ti 1 –  х ,Ta х ), Al 3 (Ti,Ta), and Al 3 (Ti 0.8 V 0.2 ). The joint conversion of titanium dioxide and rare refractory metal pentoxides during the reduction process is affected through sequential and parallel stages of the formation of simple and complex element oxides with low oxidation states.</description><subject>Aluminothermic reduction</subject><subject>Aluminum compounds</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Differential thermal analysis</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Modelling</subject><subject>Niobium oxides</subject><subject>Oxidation</subject><subject>Physical Metallurgy and Heat Treatment</subject><subject>Reagents</subject><subject>Reduction (metal working)</subject><subject>Refractory metals</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Thermodynamic models</subject><subject>Titanium</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><subject>Vanadium oxides</subject><issn>1067-8212</issn><issn>1934-970X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pkstltjlK0KhWlVvG2ZLOJbmk3Ncke-u9NWcGDeJph3vfewCPknMElZ8CvXhgU5QQZIgMEwPyAjJjkeSZLeD9Me5KzvX5MTkJYAQghhRyR5wfXdpE-mqjWaxc_jd-0mi5M0-vYuo46S5dtVF3bb6jqGrpQ3iTZeqWj87vBGPbYzLt-S99OyZFNF3P2M8fk9fZmOb3L5k-z--n1PNOcFTHj0jRoAVGxQtWIAgTm2JQqt1CbvDSyyCciF6xRtUZdS81sDdpqw4GXjeVjcjHkbr376k2I1cr1vksvKxQIkk-w4IliA6W9C8EbW219u1F-VzGo9sVVf4pLHhw8IbHdh_G_yf-bvgFvqW7a</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Balakirev, V. F.</creator><creator>Osinkina, T. V.</creator><creator>Krasikov, S. A.</creator><creator>Zhilina, E. M.</creator><creator>Vedmid’, L. B.</creator><creator>Zhidovinova, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210301</creationdate><title>Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V</title><author>Balakirev, V. F. ; Osinkina, T. V. ; Krasikov, S. A. ; Zhilina, E. M. ; Vedmid’, L. B. ; Zhidovinova, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-39ed2f022a16ab22505242d7a4f0be47e96485451dabc2cb9c1fb0cfce3037df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminothermic reduction</topic><topic>Aluminum compounds</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Differential thermal analysis</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Modelling</topic><topic>Niobium oxides</topic><topic>Oxidation</topic><topic>Physical Metallurgy and Heat Treatment</topic><topic>Reagents</topic><topic>Reduction (metal working)</topic><topic>Refractory metals</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Thermodynamic models</topic><topic>Titanium</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakirev, V. F.</creatorcontrib><creatorcontrib>Osinkina, T. V.</creatorcontrib><creatorcontrib>Krasikov, S. A.</creatorcontrib><creatorcontrib>Zhilina, E. M.</creatorcontrib><creatorcontrib>Vedmid’, L. B.</creatorcontrib><creatorcontrib>Zhidovinova, S. V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian journal of non-ferrous metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakirev, V. F.</au><au>Osinkina, T. V.</au><au>Krasikov, S. A.</au><au>Zhilina, E. M.</au><au>Vedmid’, L. B.</au><au>Zhidovinova, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V</atitle><jtitle>Russian journal of non-ferrous metals</jtitle><stitle>Russ. J. Non-ferrous Metals</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>62</volume><issue>2</issue><spage>190</spage><epage>196</epage><pages>190-196</pages><issn>1067-8212</issn><eissn>1934-970X</eissn><abstract>The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, and vanadium from their oxides are studied using thermodynamic modeling and differential thermal (DTA) and X-ray diffraction phase analysis. Using computer thermodynamic modeling made it possible to predict the optimal temperature conditions in the metallothermic process, the composition and ratio of the reagents in the charge, the behavior of the elements, and the sequence of the phase formation. To identify the kinetic and thermochemical components of the process, thermodynamic calculations are supplemented by differential thermal studies using combined scanning calorimetry. An analysis of the theoretical and experimental data shows that the interaction of aluminum with titanium dioxide proceeds through the stage of formation of titanium monoxide and results in the formation of Ti x Al y intermetallic compounds of various compositions (TiAl 3 , TiAl, and Ti 2 Al) depending on the Al to TiO 2 ratio in the batch. When titanium dioxide is partially replaced by niobium, tantalum, and vanadium oxides, the metallothermic process under interactions in the Al–TiO 2 –Nb 2 O 5 , Al–TiO 2 –Ta 2 O 5 , and Al–TiO 2 –V 2 O 5 systems is of the similar character; enters the active phase after the formation of liquid aluminum; is accompanied by exothermic effects; and is characterized by the priority formation of titanium aluminides and binary and ternary intermetallic aluminum compounds with rare refractory metals of group V such as AlNb 3 , Al 3 Nb, Al 3 Ta, Al 3 (Ti 1 –  х ,Ta х ), Al 3 (Ti,Ta), and Al 3 (Ti 0.8 V 0.2 ). The joint conversion of titanium dioxide and rare refractory metal pentoxides during the reduction process is affected through sequential and parallel stages of the formation of simple and complex element oxides with low oxidation states.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1067821221020024</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1067-8212
ispartof Russian journal of non-ferrous metals, 2021-03, Vol.62 (2), p.190-196
issn 1067-8212
1934-970X
language eng
recordid cdi_proquest_journals_2520938263
source SpringerLink Journals
subjects Aluminothermic reduction
Aluminum compounds
Chemistry and Materials Science
Composition
Differential thermal analysis
Intermetallic compounds
Materials Science
Metallic Materials
Modelling
Niobium oxides
Oxidation
Physical Metallurgy and Heat Treatment
Reagents
Reduction (metal working)
Refractory metals
Tantalum
Tantalum oxides
Thermodynamic models
Titanium
Titanium aluminides
Titanium base alloys
Titanium dioxide
Titanium oxides
Vanadium oxides
title Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Metallothermic%20Reduction%20of%20Titanium%20and%20Rare%20Refractory%20Metals%20of%20Group%20V&rft.jtitle=Russian%20journal%20of%20non-ferrous%20metals&rft.au=Balakirev,%20V.%20F.&rft.date=2021-03-01&rft.volume=62&rft.issue=2&rft.spage=190&rft.epage=196&rft.pages=190-196&rft.issn=1067-8212&rft.eissn=1934-970X&rft_id=info:doi/10.3103/S1067821221020024&rft_dat=%3Cproquest_cross%3E2520938263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520938263&rft_id=info:pmid/&rfr_iscdi=true