Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation
In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-05, Vol.44 (8), p.6406-6421 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6421 |
---|---|
container_issue | 8 |
container_start_page | 6406 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Wen, Zhenshu Li, Huijun Fu, Yanggeng |
description | In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended. |
doi_str_mv | 10.1002/mma.7192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520681440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520681440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgUQpSDyCJQZYUmzXaeqxKr9SKwZAjJbt2MLFiVM7aenWR0DiDfskJJSV6d7h09HRAeAcowFGiFwXhRhkmJED0MOIsQTTbHQIeghnKKEE02NwEuMCITTGmPTAdiKbMhdlDfVn5ayyNax0sD63Cq7FSsPoXVNbX0YoyhzW79oG6GzROuNDEWHtYayE0rvtV20LDU0QqvPCwZtgS6PdZb7bfj_7D-_8qv3erIu-hHrZiM6dgiMjXNRnf7cPXu9uX6YPyezp_nE6mSWKsCFJDMM6U0SO0zTPhaJDo7CSVEqsWIoEG2NKMiY1pXSEFCZC64ypTAkkJRpJM-yDi31uFfyy0bHmC9-EtmbkJCVo1AZQ1KqrvVLBxxi04VWwhQgbjhHv9uXtvrzbt6XJnq6t05t_HZ_PJ7_-B8yFgeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520681440</pqid></control><display><type>article</type><title>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</title><source>Access via Wiley Online Library</source><creator>Wen, Zhenshu ; Li, Huijun ; Fu, Yanggeng</creator><creatorcontrib>Wen, Zhenshu ; Li, Huijun ; Fu, Yanggeng</creatorcontrib><description>In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7192</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>generalized bifurcation method ; limit forms ; M/W‐shaped periodic wave solutions ; space–time fractional Drinfel'd–Sokolov–Wilson equation</subject><ispartof>Mathematical methods in the applied sciences, 2021-05, Vol.44 (8), p.6406-6421</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</citedby><cites>FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</cites><orcidid>0000-0002-2083-6396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7192$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7192$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wen, Zhenshu</creatorcontrib><creatorcontrib>Li, Huijun</creatorcontrib><creatorcontrib>Fu, Yanggeng</creatorcontrib><title>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended.</description><subject>generalized bifurcation method</subject><subject>limit forms</subject><subject>M/W‐shaped periodic wave solutions</subject><subject>space–time fractional Drinfel'd–Sokolov–Wilson equation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgUQpSDyCJQZYUmzXaeqxKr9SKwZAjJbt2MLFiVM7aenWR0DiDfskJJSV6d7h09HRAeAcowFGiFwXhRhkmJED0MOIsQTTbHQIeghnKKEE02NwEuMCITTGmPTAdiKbMhdlDfVn5ayyNax0sD63Cq7FSsPoXVNbX0YoyhzW79oG6GzROuNDEWHtYayE0rvtV20LDU0QqvPCwZtgS6PdZb7bfj_7D-_8qv3erIu-hHrZiM6dgiMjXNRnf7cPXu9uX6YPyezp_nE6mSWKsCFJDMM6U0SO0zTPhaJDo7CSVEqsWIoEG2NKMiY1pXSEFCZC64ypTAkkJRpJM-yDi31uFfyy0bHmC9-EtmbkJCVo1AZQ1KqrvVLBxxi04VWwhQgbjhHv9uXtvrzbt6XJnq6t05t_HZ_PJ7_-B8yFgeU</recordid><startdate>20210530</startdate><enddate>20210530</enddate><creator>Wen, Zhenshu</creator><creator>Li, Huijun</creator><creator>Fu, Yanggeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2083-6396</orcidid></search><sort><creationdate>20210530</creationdate><title>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</title><author>Wen, Zhenshu ; Li, Huijun ; Fu, Yanggeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>generalized bifurcation method</topic><topic>limit forms</topic><topic>M/W‐shaped periodic wave solutions</topic><topic>space–time fractional Drinfel'd–Sokolov–Wilson equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Zhenshu</creatorcontrib><creatorcontrib>Li, Huijun</creatorcontrib><creatorcontrib>Fu, Yanggeng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Zhenshu</au><au>Li, Huijun</au><au>Fu, Yanggeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-05-30</date><risdate>2021</risdate><volume>44</volume><issue>8</issue><spage>6406</spage><epage>6421</epage><pages>6406-6421</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7192</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2083-6396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-05, Vol.44 (8), p.6406-6421 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2520681440 |
source | Access via Wiley Online Library |
subjects | generalized bifurcation method limit forms M/W‐shaped periodic wave solutions space–time fractional Drinfel'd–Sokolov–Wilson equation |
title | Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundant%20explicit%20periodic%20wave%20solutions%20and%20their%20limit%20forms%20to%20space%E2%80%90time%20fractional%20Drinfel'd%E2%80%93Sokolov%E2%80%93Wilson%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Wen,%20Zhenshu&rft.date=2021-05-30&rft.volume=44&rft.issue=8&rft.spage=6406&rft.epage=6421&rft.pages=6406-6421&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7192&rft_dat=%3Cproquest_cross%3E2520681440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520681440&rft_id=info:pmid/&rfr_iscdi=true |