Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation

In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-05, Vol.44 (8), p.6406-6421
Hauptverfasser: Wen, Zhenshu, Li, Huijun, Fu, Yanggeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6421
container_issue 8
container_start_page 6406
container_title Mathematical methods in the applied sciences
container_volume 44
creator Wen, Zhenshu
Li, Huijun
Fu, Yanggeng
description In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended.
doi_str_mv 10.1002/mma.7192
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520681440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520681440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgUQpSDyCJQZYUmzXaeqxKr9SKwZAjJbt2MLFiVM7aenWR0DiDfskJJSV6d7h09HRAeAcowFGiFwXhRhkmJED0MOIsQTTbHQIeghnKKEE02NwEuMCITTGmPTAdiKbMhdlDfVn5ayyNax0sD63Cq7FSsPoXVNbX0YoyhzW79oG6GzROuNDEWHtYayE0rvtV20LDU0QqvPCwZtgS6PdZb7bfj_7D-_8qv3erIu-hHrZiM6dgiMjXNRnf7cPXu9uX6YPyezp_nE6mSWKsCFJDMM6U0SO0zTPhaJDo7CSVEqsWIoEG2NKMiY1pXSEFCZC64ypTAkkJRpJM-yDi31uFfyy0bHmC9-EtmbkJCVo1AZQ1KqrvVLBxxi04VWwhQgbjhHv9uXtvrzbt6XJnq6t05t_HZ_PJ7_-B8yFgeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520681440</pqid></control><display><type>article</type><title>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</title><source>Access via Wiley Online Library</source><creator>Wen, Zhenshu ; Li, Huijun ; Fu, Yanggeng</creator><creatorcontrib>Wen, Zhenshu ; Li, Huijun ; Fu, Yanggeng</creatorcontrib><description>In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7192</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>generalized bifurcation method ; limit forms ; M/W‐shaped periodic wave solutions ; space–time fractional Drinfel'd–Sokolov–Wilson equation</subject><ispartof>Mathematical methods in the applied sciences, 2021-05, Vol.44 (8), p.6406-6421</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</citedby><cites>FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</cites><orcidid>0000-0002-2083-6396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7192$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7192$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wen, Zhenshu</creatorcontrib><creatorcontrib>Li, Huijun</creatorcontrib><creatorcontrib>Fu, Yanggeng</creatorcontrib><title>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended.</description><subject>generalized bifurcation method</subject><subject>limit forms</subject><subject>M/W‐shaped periodic wave solutions</subject><subject>space–time fractional Drinfel'd–Sokolov–Wilson equation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgUQpSDyCJQZYUmzXaeqxKr9SKwZAjJbt2MLFiVM7aenWR0DiDfskJJSV6d7h09HRAeAcowFGiFwXhRhkmJED0MOIsQTTbHQIeghnKKEE02NwEuMCITTGmPTAdiKbMhdlDfVn5ayyNax0sD63Cq7FSsPoXVNbX0YoyhzW79oG6GzROuNDEWHtYayE0rvtV20LDU0QqvPCwZtgS6PdZb7bfj_7D-_8qv3erIu-hHrZiM6dgiMjXNRnf7cPXu9uX6YPyezp_nE6mSWKsCFJDMM6U0SO0zTPhaJDo7CSVEqsWIoEG2NKMiY1pXSEFCZC64ypTAkkJRpJM-yDi31uFfyy0bHmC9-EtmbkJCVo1AZQ1KqrvVLBxxi04VWwhQgbjhHv9uXtvrzbt6XJnq6t05t_HZ_PJ7_-B8yFgeU</recordid><startdate>20210530</startdate><enddate>20210530</enddate><creator>Wen, Zhenshu</creator><creator>Li, Huijun</creator><creator>Fu, Yanggeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2083-6396</orcidid></search><sort><creationdate>20210530</creationdate><title>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</title><author>Wen, Zhenshu ; Li, Huijun ; Fu, Yanggeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-f91e7c2b855ddac43fc1cb4bb1c950a9814279be44460c12aee79c7ca0bb06bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>generalized bifurcation method</topic><topic>limit forms</topic><topic>M/W‐shaped periodic wave solutions</topic><topic>space–time fractional Drinfel'd–Sokolov–Wilson equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Zhenshu</creatorcontrib><creatorcontrib>Li, Huijun</creatorcontrib><creatorcontrib>Fu, Yanggeng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Zhenshu</au><au>Li, Huijun</au><au>Fu, Yanggeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-05-30</date><risdate>2021</risdate><volume>44</volume><issue>8</issue><spage>6406</spage><epage>6421</epage><pages>6406-6421</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we exploit the generalized bifurcation method to study space–time fractional Drinfel'd–Sokolov–Wilson equation and derive its various new exact explicit periodic wave solutions. Especially and interestingly, we find the so‐called M/W‐shaped periodic wave solutions, which were not found in previous studies. Furthermore, we uncover their inside limit relations as well as their limit relations with other solutions under corresponding parameters conditions. The previous results are extended.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7192</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2083-6396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-05, Vol.44 (8), p.6406-6421
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2520681440
source Access via Wiley Online Library
subjects generalized bifurcation method
limit forms
M/W‐shaped periodic wave solutions
space–time fractional Drinfel'd–Sokolov–Wilson equation
title Abundant explicit periodic wave solutions and their limit forms to space‐time fractional Drinfel'd–Sokolov–Wilson equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundant%20explicit%20periodic%20wave%20solutions%20and%20their%20limit%20forms%20to%20space%E2%80%90time%20fractional%20Drinfel'd%E2%80%93Sokolov%E2%80%93Wilson%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Wen,%20Zhenshu&rft.date=2021-05-30&rft.volume=44&rft.issue=8&rft.spage=6406&rft.epage=6421&rft.pages=6406-6421&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7192&rft_dat=%3Cproquest_cross%3E2520681440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520681440&rft_id=info:pmid/&rfr_iscdi=true