A Hermite polynomial algorithm for detection of lesions in lymphoma images

There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2021-05, Vol.24 (2), p.523-535
Hauptverfasser: Martins, Alessandro S., Neves, Leandro A., de Faria, Paulo R., Tosta, Thaína A. A., Longo, Leonardo C., Silva, Adriano B., Roberto, Guilherme Freire, do Nascimento, Marcelo Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue 2
container_start_page 523
container_title Pattern analysis and applications : PAA
container_volume 24
creator Martins, Alessandro S.
Neves, Leandro A.
de Faria, Paulo R.
Tosta, Thaína A. A.
Longo, Leonardo C.
Silva, Adriano B.
Roberto, Guilherme Freire
do Nascimento, Marcelo Z.
description There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.
doi_str_mv 10.1007/s10044-020-00927-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520220310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520220310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_1iTHUtQqBS8K3kK6O2m37G7WZHtoP72pK3rzMjMM770ZfghdM3rLKFV3KVcpCeWUUGq4IocTNGFSCKKK4uP0d5bsHF2ktKVUCMH1BL3M8AJiWw-A-9Dsu9DWrsGuWYdYD5sW-xBxBQOUQx06HDxuIOUp4brDzb7tN6F1uG7dGtIlOvOuSXD106fo_fHhbb4gy9en5_lsSUrBzEDMSnswSnOvXQHSF6CZkkYbLoTxRd57Lp2UhslVuSrvq6rUSkKpXCWZqpyYopsxt4_hcwdpsNuwi10-aXnBKedUMJpVfFSVMaQUwds-5j_j3jJqj8zsyMxmZvabmT1kkxhNKYu7NcS_6H9cX7y_b-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520220310</pqid></control><display><type>article</type><title>A Hermite polynomial algorithm for detection of lesions in lymphoma images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Martins, Alessandro S. ; Neves, Leandro A. ; de Faria, Paulo R. ; Tosta, Thaína A. A. ; Longo, Leonardo C. ; Silva, Adriano B. ; Roberto, Guilherme Freire ; do Nascimento, Marcelo Z.</creator><creatorcontrib>Martins, Alessandro S. ; Neves, Leandro A. ; de Faria, Paulo R. ; Tosta, Thaína A. A. ; Longo, Leonardo C. ; Silva, Adriano B. ; Roberto, Guilherme Freire ; do Nascimento, Marcelo Z.</creatorcontrib><description>There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-020-00927-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Channels ; Color ; Computer Science ; Feature extraction ; Fractal geometry ; Fractal models ; Fractals ; Hermite polynomials ; Image classification ; Immunology ; Lesions ; Leukocytes ; Lymphoma ; Machine learning ; Original Article ; Pattern Recognition ; Performance evaluation</subject><ispartof>Pattern analysis and applications : PAA, 2021-05, Vol.24 (2), p.523-535</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</citedby><cites>FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</cites><orcidid>0000-0003-4635-5037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-020-00927-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-020-00927-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Martins, Alessandro S.</creatorcontrib><creatorcontrib>Neves, Leandro A.</creatorcontrib><creatorcontrib>de Faria, Paulo R.</creatorcontrib><creatorcontrib>Tosta, Thaína A. A.</creatorcontrib><creatorcontrib>Longo, Leonardo C.</creatorcontrib><creatorcontrib>Silva, Adriano B.</creatorcontrib><creatorcontrib>Roberto, Guilherme Freire</creatorcontrib><creatorcontrib>do Nascimento, Marcelo Z.</creatorcontrib><title>A Hermite polynomial algorithm for detection of lesions in lymphoma images</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Color</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Fractal geometry</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>Hermite polynomials</subject><subject>Image classification</subject><subject>Immunology</subject><subject>Lesions</subject><subject>Leukocytes</subject><subject>Lymphoma</subject><subject>Machine learning</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Performance evaluation</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_1iTHUtQqBS8K3kK6O2m37G7WZHtoP72pK3rzMjMM770ZfghdM3rLKFV3KVcpCeWUUGq4IocTNGFSCKKK4uP0d5bsHF2ktKVUCMH1BL3M8AJiWw-A-9Dsu9DWrsGuWYdYD5sW-xBxBQOUQx06HDxuIOUp4brDzb7tN6F1uG7dGtIlOvOuSXD106fo_fHhbb4gy9en5_lsSUrBzEDMSnswSnOvXQHSF6CZkkYbLoTxRd57Lp2UhslVuSrvq6rUSkKpXCWZqpyYopsxt4_hcwdpsNuwi10-aXnBKedUMJpVfFSVMaQUwds-5j_j3jJqj8zsyMxmZvabmT1kkxhNKYu7NcS_6H9cX7y_b-U</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Martins, Alessandro S.</creator><creator>Neves, Leandro A.</creator><creator>de Faria, Paulo R.</creator><creator>Tosta, Thaína A. A.</creator><creator>Longo, Leonardo C.</creator><creator>Silva, Adriano B.</creator><creator>Roberto, Guilherme Freire</creator><creator>do Nascimento, Marcelo Z.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4635-5037</orcidid></search><sort><creationdate>20210501</creationdate><title>A Hermite polynomial algorithm for detection of lesions in lymphoma images</title><author>Martins, Alessandro S. ; Neves, Leandro A. ; de Faria, Paulo R. ; Tosta, Thaína A. A. ; Longo, Leonardo C. ; Silva, Adriano B. ; Roberto, Guilherme Freire ; do Nascimento, Marcelo Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Color</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Fractal geometry</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>Hermite polynomials</topic><topic>Image classification</topic><topic>Immunology</topic><topic>Lesions</topic><topic>Leukocytes</topic><topic>Lymphoma</topic><topic>Machine learning</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Alessandro S.</creatorcontrib><creatorcontrib>Neves, Leandro A.</creatorcontrib><creatorcontrib>de Faria, Paulo R.</creatorcontrib><creatorcontrib>Tosta, Thaína A. A.</creatorcontrib><creatorcontrib>Longo, Leonardo C.</creatorcontrib><creatorcontrib>Silva, Adriano B.</creatorcontrib><creatorcontrib>Roberto, Guilherme Freire</creatorcontrib><creatorcontrib>do Nascimento, Marcelo Z.</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Alessandro S.</au><au>Neves, Leandro A.</au><au>de Faria, Paulo R.</au><au>Tosta, Thaína A. A.</au><au>Longo, Leonardo C.</au><au>Silva, Adriano B.</au><au>Roberto, Guilherme Freire</au><au>do Nascimento, Marcelo Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hermite polynomial algorithm for detection of lesions in lymphoma images</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>24</volume><issue>2</issue><spage>523</spage><epage>535</epage><pages>523-535</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-020-00927-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4635-5037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2021-05, Vol.24 (2), p.523-535
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_2520220310
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Channels
Color
Computer Science
Feature extraction
Fractal geometry
Fractal models
Fractals
Hermite polynomials
Image classification
Immunology
Lesions
Leukocytes
Lymphoma
Machine learning
Original Article
Pattern Recognition
Performance evaluation
title A Hermite polynomial algorithm for detection of lesions in lymphoma images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hermite%20polynomial%20algorithm%20for%20detection%20of%20lesions%20in%20lymphoma%20images&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Martins,%20Alessandro%20S.&rft.date=2021-05-01&rft.volume=24&rft.issue=2&rft.spage=523&rft.epage=535&rft.pages=523-535&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-020-00927-z&rft_dat=%3Cproquest_cross%3E2520220310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520220310&rft_id=info:pmid/&rfr_iscdi=true