A Hermite polynomial algorithm for detection of lesions in lymphoma images
There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can ha...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2021-05, Vol.24 (2), p.523-535 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 535 |
---|---|
container_issue | 2 |
container_start_page | 523 |
container_title | Pattern analysis and applications : PAA |
container_volume | 24 |
creator | Martins, Alessandro S. Neves, Leandro A. de Faria, Paulo R. Tosta, Thaína A. A. Longo, Leonardo C. Silva, Adriano B. Roberto, Guilherme Freire do Nascimento, Marcelo Z. |
description | There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices. |
doi_str_mv | 10.1007/s10044-020-00927-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520220310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520220310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_1iTHUtQqBS8K3kK6O2m37G7WZHtoP72pK3rzMjMM770ZfghdM3rLKFV3KVcpCeWUUGq4IocTNGFSCKKK4uP0d5bsHF2ktKVUCMH1BL3M8AJiWw-A-9Dsu9DWrsGuWYdYD5sW-xBxBQOUQx06HDxuIOUp4brDzb7tN6F1uG7dGtIlOvOuSXD106fo_fHhbb4gy9en5_lsSUrBzEDMSnswSnOvXQHSF6CZkkYbLoTxRd57Lp2UhslVuSrvq6rUSkKpXCWZqpyYopsxt4_hcwdpsNuwi10-aXnBKedUMJpVfFSVMaQUwds-5j_j3jJqj8zsyMxmZvabmT1kkxhNKYu7NcS_6H9cX7y_b-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520220310</pqid></control><display><type>article</type><title>A Hermite polynomial algorithm for detection of lesions in lymphoma images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Martins, Alessandro S. ; Neves, Leandro A. ; de Faria, Paulo R. ; Tosta, Thaína A. A. ; Longo, Leonardo C. ; Silva, Adriano B. ; Roberto, Guilherme Freire ; do Nascimento, Marcelo Z.</creator><creatorcontrib>Martins, Alessandro S. ; Neves, Leandro A. ; de Faria, Paulo R. ; Tosta, Thaína A. A. ; Longo, Leonardo C. ; Silva, Adriano B. ; Roberto, Guilherme Freire ; do Nascimento, Marcelo Z.</creatorcontrib><description>There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-020-00927-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Channels ; Color ; Computer Science ; Feature extraction ; Fractal geometry ; Fractal models ; Fractals ; Hermite polynomials ; Image classification ; Immunology ; Lesions ; Leukocytes ; Lymphoma ; Machine learning ; Original Article ; Pattern Recognition ; Performance evaluation</subject><ispartof>Pattern analysis and applications : PAA, 2021-05, Vol.24 (2), p.523-535</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</citedby><cites>FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</cites><orcidid>0000-0003-4635-5037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-020-00927-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-020-00927-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Martins, Alessandro S.</creatorcontrib><creatorcontrib>Neves, Leandro A.</creatorcontrib><creatorcontrib>de Faria, Paulo R.</creatorcontrib><creatorcontrib>Tosta, Thaína A. A.</creatorcontrib><creatorcontrib>Longo, Leonardo C.</creatorcontrib><creatorcontrib>Silva, Adriano B.</creatorcontrib><creatorcontrib>Roberto, Guilherme Freire</creatorcontrib><creatorcontrib>do Nascimento, Marcelo Z.</creatorcontrib><title>A Hermite polynomial algorithm for detection of lesions in lymphoma images</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Color</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Fractal geometry</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>Hermite polynomials</subject><subject>Image classification</subject><subject>Immunology</subject><subject>Lesions</subject><subject>Leukocytes</subject><subject>Lymphoma</subject><subject>Machine learning</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Performance evaluation</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczT_1iTHUtQqBS8K3kK6O2m37G7WZHtoP72pK3rzMjMM770ZfghdM3rLKFV3KVcpCeWUUGq4IocTNGFSCKKK4uP0d5bsHF2ktKVUCMH1BL3M8AJiWw-A-9Dsu9DWrsGuWYdYD5sW-xBxBQOUQx06HDxuIOUp4brDzb7tN6F1uG7dGtIlOvOuSXD106fo_fHhbb4gy9en5_lsSUrBzEDMSnswSnOvXQHSF6CZkkYbLoTxRd57Lp2UhslVuSrvq6rUSkKpXCWZqpyYopsxt4_hcwdpsNuwi10-aXnBKedUMJpVfFSVMaQUwds-5j_j3jJqj8zsyMxmZvabmT1kkxhNKYu7NcS_6H9cX7y_b-U</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Martins, Alessandro S.</creator><creator>Neves, Leandro A.</creator><creator>de Faria, Paulo R.</creator><creator>Tosta, Thaína A. A.</creator><creator>Longo, Leonardo C.</creator><creator>Silva, Adriano B.</creator><creator>Roberto, Guilherme Freire</creator><creator>do Nascimento, Marcelo Z.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4635-5037</orcidid></search><sort><creationdate>20210501</creationdate><title>A Hermite polynomial algorithm for detection of lesions in lymphoma images</title><author>Martins, Alessandro S. ; Neves, Leandro A. ; de Faria, Paulo R. ; Tosta, Thaína A. A. ; Longo, Leonardo C. ; Silva, Adriano B. ; Roberto, Guilherme Freire ; do Nascimento, Marcelo Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9b8fe9782f8a5e4f5e81749892339f582ff24a44914bcbc6ddc874ec7ad417da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Color</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Fractal geometry</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>Hermite polynomials</topic><topic>Image classification</topic><topic>Immunology</topic><topic>Lesions</topic><topic>Leukocytes</topic><topic>Lymphoma</topic><topic>Machine learning</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Alessandro S.</creatorcontrib><creatorcontrib>Neves, Leandro A.</creatorcontrib><creatorcontrib>de Faria, Paulo R.</creatorcontrib><creatorcontrib>Tosta, Thaína A. A.</creatorcontrib><creatorcontrib>Longo, Leonardo C.</creatorcontrib><creatorcontrib>Silva, Adriano B.</creatorcontrib><creatorcontrib>Roberto, Guilherme Freire</creatorcontrib><creatorcontrib>do Nascimento, Marcelo Z.</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Alessandro S.</au><au>Neves, Leandro A.</au><au>de Faria, Paulo R.</au><au>Tosta, Thaína A. A.</au><au>Longo, Leonardo C.</au><au>Silva, Adriano B.</au><au>Roberto, Guilherme Freire</au><au>do Nascimento, Marcelo Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hermite polynomial algorithm for detection of lesions in lymphoma images</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>24</volume><issue>2</issue><spage>523</spage><epage>535</epage><pages>523-535</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>There are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-020-00927-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4635-5037</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2021-05, Vol.24 (2), p.523-535 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_proquest_journals_2520220310 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Channels Color Computer Science Feature extraction Fractal geometry Fractal models Fractals Hermite polynomials Image classification Immunology Lesions Leukocytes Lymphoma Machine learning Original Article Pattern Recognition Performance evaluation |
title | A Hermite polynomial algorithm for detection of lesions in lymphoma images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hermite%20polynomial%20algorithm%20for%20detection%20of%20lesions%20in%20lymphoma%20images&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Martins,%20Alessandro%20S.&rft.date=2021-05-01&rft.volume=24&rft.issue=2&rft.spage=523&rft.epage=535&rft.pages=523-535&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-020-00927-z&rft_dat=%3Cproquest_cross%3E2520220310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520220310&rft_id=info:pmid/&rfr_iscdi=true |