Shock wave driven microparticles for pharmaceutical applications

Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock waves 2008-10, Vol.18 (5), p.393-400
Hauptverfasser: Menezes, V., Takayama, K., Gojani, A., Hosseini, S. H. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 5
container_start_page 393
container_title Shock waves
container_volume 18
creator Menezes, V.
Takayama, K.
Gojani, A.
Hosseini, S. H. R.
description Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900–400 m/s over a distance of 1.5–10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.
doi_str_mv 10.1007/s00193-008-0163-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520220187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520220187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e8562391245b07e4d461810b0f374838038b0e37be5c973441257f28e385b2ce3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9FJJmnSm7L4BYIH9RzS7tTt2m1r0l3x35ulgidPMwzPO8M8jJ0LuBQA5ioCiAI5gOUgcuTFAZsJhZJLofGQzaBAy4W05pidxLhOtMmNmbHrl1VffWRffkfZMjQ76rJNU4V-8GFsqpZiVvchG1Y-bHxF2zTzbeaHoU3N2PRdPGVHtW8jnf3WOXu7u31dPPCn5_vHxc0Tr9DKkZPVucRCSKVLMKSWKhdWQAk1GmXRAtoSCE1JuioMKiWkNrW0hFaXsiKcs4tp7xD6zy3F0a37bejSSSe1BClBWJMoMVHphRgD1W4IzcaHbyfA7UW5SZRLotxelCtSRk6ZmNjuncLf5v9DP2zcaaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520220187</pqid></control><display><type>article</type><title>Shock wave driven microparticles for pharmaceutical applications</title><source>SpringerLink Journals (MCLS)</source><creator>Menezes, V. ; Takayama, K. ; Gojani, A. ; Hosseini, S. H. R.</creator><creatorcontrib>Menezes, V. ; Takayama, K. ; Gojani, A. ; Hosseini, S. H. R.</creatorcontrib><description>Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900–400 m/s over a distance of 1.5–10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-008-0163-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Acoustics ; Aluminum ; Condensed Matter Physics ; Deoxyribonucleic acid ; DNA ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Gelatin ; Gene therapy ; Heat and Mass Transfer ; High speed ; Laser beams ; Launching pads ; Metal foils ; Microparticles ; Neodymium lasers ; Original Article ; Particle acceleration ; Pharmaceuticals ; Shock waves ; Thermodynamics ; YAG lasers ; Yttrium</subject><ispartof>Shock waves, 2008-10, Vol.18 (5), p.393-400</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e8562391245b07e4d461810b0f374838038b0e37be5c973441257f28e385b2ce3</citedby><cites>FETCH-LOGICAL-c382t-e8562391245b07e4d461810b0f374838038b0e37be5c973441257f28e385b2ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00193-008-0163-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00193-008-0163-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Menezes, V.</creatorcontrib><creatorcontrib>Takayama, K.</creatorcontrib><creatorcontrib>Gojani, A.</creatorcontrib><creatorcontrib>Hosseini, S. H. R.</creatorcontrib><title>Shock wave driven microparticles for pharmaceutical applications</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900–400 m/s over a distance of 1.5–10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.</description><subject>Ablation</subject><subject>Acoustics</subject><subject>Aluminum</subject><subject>Condensed Matter Physics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Gelatin</subject><subject>Gene therapy</subject><subject>Heat and Mass Transfer</subject><subject>High speed</subject><subject>Laser beams</subject><subject>Launching pads</subject><subject>Metal foils</subject><subject>Microparticles</subject><subject>Neodymium lasers</subject><subject>Original Article</subject><subject>Particle acceleration</subject><subject>Pharmaceuticals</subject><subject>Shock waves</subject><subject>Thermodynamics</subject><subject>YAG lasers</subject><subject>Yttrium</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9FJJmnSm7L4BYIH9RzS7tTt2m1r0l3x35ulgidPMwzPO8M8jJ0LuBQA5ioCiAI5gOUgcuTFAZsJhZJLofGQzaBAy4W05pidxLhOtMmNmbHrl1VffWRffkfZMjQ76rJNU4V-8GFsqpZiVvchG1Y-bHxF2zTzbeaHoU3N2PRdPGVHtW8jnf3WOXu7u31dPPCn5_vHxc0Tr9DKkZPVucRCSKVLMKSWKhdWQAk1GmXRAtoSCE1JuioMKiWkNrW0hFaXsiKcs4tp7xD6zy3F0a37bejSSSe1BClBWJMoMVHphRgD1W4IzcaHbyfA7UW5SZRLotxelCtSRk6ZmNjuncLf5v9DP2zcaaA</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Menezes, V.</creator><creator>Takayama, K.</creator><creator>Gojani, A.</creator><creator>Hosseini, S. H. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081001</creationdate><title>Shock wave driven microparticles for pharmaceutical applications</title><author>Menezes, V. ; Takayama, K. ; Gojani, A. ; Hosseini, S. H. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e8562391245b07e4d461810b0f374838038b0e37be5c973441257f28e385b2ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ablation</topic><topic>Acoustics</topic><topic>Aluminum</topic><topic>Condensed Matter Physics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Gelatin</topic><topic>Gene therapy</topic><topic>Heat and Mass Transfer</topic><topic>High speed</topic><topic>Laser beams</topic><topic>Launching pads</topic><topic>Metal foils</topic><topic>Microparticles</topic><topic>Neodymium lasers</topic><topic>Original Article</topic><topic>Particle acceleration</topic><topic>Pharmaceuticals</topic><topic>Shock waves</topic><topic>Thermodynamics</topic><topic>YAG lasers</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menezes, V.</creatorcontrib><creatorcontrib>Takayama, K.</creatorcontrib><creatorcontrib>Gojani, A.</creatorcontrib><creatorcontrib>Hosseini, S. H. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menezes, V.</au><au>Takayama, K.</au><au>Gojani, A.</au><au>Hosseini, S. H. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock wave driven microparticles for pharmaceutical applications</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>18</volume><issue>5</issue><spage>393</spage><epage>400</epage><pages>393-400</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900–400 m/s over a distance of 1.5–10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-008-0163-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-1287
ispartof Shock waves, 2008-10, Vol.18 (5), p.393-400
issn 0938-1287
1432-2153
language eng
recordid cdi_proquest_journals_2520220187
source SpringerLink Journals (MCLS)
subjects Ablation
Acoustics
Aluminum
Condensed Matter Physics
Deoxyribonucleic acid
DNA
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid- and Aerodynamics
Gelatin
Gene therapy
Heat and Mass Transfer
High speed
Laser beams
Launching pads
Metal foils
Microparticles
Neodymium lasers
Original Article
Particle acceleration
Pharmaceuticals
Shock waves
Thermodynamics
YAG lasers
Yttrium
title Shock wave driven microparticles for pharmaceutical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20wave%20driven%20microparticles%20for%20pharmaceutical%20applications&rft.jtitle=Shock%20waves&rft.au=Menezes,%20V.&rft.date=2008-10-01&rft.volume=18&rft.issue=5&rft.spage=393&rft.epage=400&rft.pages=393-400&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-008-0163-9&rft_dat=%3Cproquest_cross%3E2520220187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520220187&rft_id=info:pmid/&rfr_iscdi=true