Basic design scheme for wave rotors

Pressure wave devices use shock waves to transfer energy directly between fluids without additional mechanical components, thus having the potential for increased efficiency. The wave rotor is a promising technology which uses shock waves in a self-cooled dynamic pressure exchange between fluids. Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock waves 2008-10, Vol.18 (5), p.365-378
Hauptverfasser: Iancu, Florin, Piechna, Janusz, Müller, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 5
container_start_page 365
container_title Shock waves
container_volume 18
creator Iancu, Florin
Piechna, Janusz
Müller, Norbert
description Pressure wave devices use shock waves to transfer energy directly between fluids without additional mechanical components, thus having the potential for increased efficiency. The wave rotor is a promising technology which uses shock waves in a self-cooled dynamic pressure exchange between fluids. For high-pressure, high-temperature topping cycles, it results in increased engine overall pressure and temperature ratio, which in turn generates higher efficiency and lower specific fuel consumption. Designing a wave rotor mainly focuses on predicting the behavior of shock and expansion waves. The extant literature presents numerous examples of wave rotor designs, but most of them rely on complicated numerical analyses as well as computer code developed specifically for this application. This paper presents an initial scheme used for designing wave rotors employing thermodynamic and gasdynamic analysis as well as computational fluid dynamic analysis. Basic theory and a simplified model of the wave rotor are used to predict the travel time and strength of waves. The model is then refined using a more advanced numerical scheme on the basis of the Lax–Wendroff method and FLUENT, a commercial CFD code.
doi_str_mv 10.1007/s00193-008-0165-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520219872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520219872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2713f80fb34d54aeb36c1cd48e100736341c934aaa4190ed4212be1c33faccc63</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gLvCrKPv5aVJu9TBLxhwo-uQpunYwWnGpKP4722p4MrV25xz7-MydolwhQD6OgFgRRyg5ICq4PqIZShJcIEFHbMMKio5ilKfsrOUtiOtldYZW97a1Lm88anb9Hlyb37n8zbE_Mt--jyGIcR0zk5a-578xe9dsNf7u5fVI18_PzytbtbcEaqBC43UltDWJJtCWl-TcugaWfrpQ1Ik0VUkrbUSK_CNFChqj46otc45RQu2nHP3MXwcfBrMNhxiP1YaUQgQWJVajBTOlIshpehbs4_dzsZvg2CmJjNvYcYtzLSF0aMjZieNbL_x8S_5f-kHXdFfNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520219872</pqid></control><display><type>article</type><title>Basic design scheme for wave rotors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Iancu, Florin ; Piechna, Janusz ; Müller, Norbert</creator><creatorcontrib>Iancu, Florin ; Piechna, Janusz ; Müller, Norbert</creatorcontrib><description>Pressure wave devices use shock waves to transfer energy directly between fluids without additional mechanical components, thus having the potential for increased efficiency. The wave rotor is a promising technology which uses shock waves in a self-cooled dynamic pressure exchange between fluids. For high-pressure, high-temperature topping cycles, it results in increased engine overall pressure and temperature ratio, which in turn generates higher efficiency and lower specific fuel consumption. Designing a wave rotor mainly focuses on predicting the behavior of shock and expansion waves. The extant literature presents numerous examples of wave rotor designs, but most of them rely on complicated numerical analyses as well as computer code developed specifically for this application. This paper presents an initial scheme used for designing wave rotors employing thermodynamic and gasdynamic analysis as well as computational fluid dynamic analysis. Basic theory and a simplified model of the wave rotor are used to predict the travel time and strength of waves. The model is then refined using a more advanced numerical scheme on the basis of the Lax–Wendroff method and FLUENT, a commercial CFD code.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-008-0165-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Computational fluid dynamics ; Condensed Matter Physics ; Design ; Dynamic pressure ; Elastic waves ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; High temperature ; Lax-Wendroff method ; Mathematical models ; Mechanical components ; Original Article ; Shock waves ; Temperature ratio ; Thermodynamics ; Travel time ; Wave rotors</subject><ispartof>Shock waves, 2008-10, Vol.18 (5), p.365-378</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2713f80fb34d54aeb36c1cd48e100736341c934aaa4190ed4212be1c33faccc63</citedby><cites>FETCH-LOGICAL-c316t-2713f80fb34d54aeb36c1cd48e100736341c934aaa4190ed4212be1c33faccc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00193-008-0165-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00193-008-0165-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Iancu, Florin</creatorcontrib><creatorcontrib>Piechna, Janusz</creatorcontrib><creatorcontrib>Müller, Norbert</creatorcontrib><title>Basic design scheme for wave rotors</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>Pressure wave devices use shock waves to transfer energy directly between fluids without additional mechanical components, thus having the potential for increased efficiency. The wave rotor is a promising technology which uses shock waves in a self-cooled dynamic pressure exchange between fluids. For high-pressure, high-temperature topping cycles, it results in increased engine overall pressure and temperature ratio, which in turn generates higher efficiency and lower specific fuel consumption. Designing a wave rotor mainly focuses on predicting the behavior of shock and expansion waves. The extant literature presents numerous examples of wave rotor designs, but most of them rely on complicated numerical analyses as well as computer code developed specifically for this application. This paper presents an initial scheme used for designing wave rotors employing thermodynamic and gasdynamic analysis as well as computational fluid dynamic analysis. Basic theory and a simplified model of the wave rotor are used to predict the travel time and strength of waves. The model is then refined using a more advanced numerical scheme on the basis of the Lax–Wendroff method and FLUENT, a commercial CFD code.</description><subject>Acoustics</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Design</subject><subject>Dynamic pressure</subject><subject>Elastic waves</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>High temperature</subject><subject>Lax-Wendroff method</subject><subject>Mathematical models</subject><subject>Mechanical components</subject><subject>Original Article</subject><subject>Shock waves</subject><subject>Temperature ratio</subject><subject>Thermodynamics</subject><subject>Travel time</subject><subject>Wave rotors</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEd_gLvCrKPv5aVJu9TBLxhwo-uQpunYwWnGpKP4722p4MrV25xz7-MydolwhQD6OgFgRRyg5ICq4PqIZShJcIEFHbMMKio5ilKfsrOUtiOtldYZW97a1Lm88anb9Hlyb37n8zbE_Mt--jyGIcR0zk5a-578xe9dsNf7u5fVI18_PzytbtbcEaqBC43UltDWJJtCWl-TcugaWfrpQ1Ik0VUkrbUSK_CNFChqj46otc45RQu2nHP3MXwcfBrMNhxiP1YaUQgQWJVajBTOlIshpehbs4_dzsZvg2CmJjNvYcYtzLSF0aMjZieNbL_x8S_5f-kHXdFfNw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Iancu, Florin</creator><creator>Piechna, Janusz</creator><creator>Müller, Norbert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081001</creationdate><title>Basic design scheme for wave rotors</title><author>Iancu, Florin ; Piechna, Janusz ; Müller, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2713f80fb34d54aeb36c1cd48e100736341c934aaa4190ed4212be1c33faccc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Design</topic><topic>Dynamic pressure</topic><topic>Elastic waves</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>High temperature</topic><topic>Lax-Wendroff method</topic><topic>Mathematical models</topic><topic>Mechanical components</topic><topic>Original Article</topic><topic>Shock waves</topic><topic>Temperature ratio</topic><topic>Thermodynamics</topic><topic>Travel time</topic><topic>Wave rotors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iancu, Florin</creatorcontrib><creatorcontrib>Piechna, Janusz</creatorcontrib><creatorcontrib>Müller, Norbert</creatorcontrib><collection>CrossRef</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iancu, Florin</au><au>Piechna, Janusz</au><au>Müller, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic design scheme for wave rotors</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>18</volume><issue>5</issue><spage>365</spage><epage>378</epage><pages>365-378</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>Pressure wave devices use shock waves to transfer energy directly between fluids without additional mechanical components, thus having the potential for increased efficiency. The wave rotor is a promising technology which uses shock waves in a self-cooled dynamic pressure exchange between fluids. For high-pressure, high-temperature topping cycles, it results in increased engine overall pressure and temperature ratio, which in turn generates higher efficiency and lower specific fuel consumption. Designing a wave rotor mainly focuses on predicting the behavior of shock and expansion waves. The extant literature presents numerous examples of wave rotor designs, but most of them rely on complicated numerical analyses as well as computer code developed specifically for this application. This paper presents an initial scheme used for designing wave rotors employing thermodynamic and gasdynamic analysis as well as computational fluid dynamic analysis. Basic theory and a simplified model of the wave rotor are used to predict the travel time and strength of waves. The model is then refined using a more advanced numerical scheme on the basis of the Lax–Wendroff method and FLUENT, a commercial CFD code.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-008-0165-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-1287
ispartof Shock waves, 2008-10, Vol.18 (5), p.365-378
issn 0938-1287
1432-2153
language eng
recordid cdi_proquest_journals_2520219872
source SpringerLink Journals - AutoHoldings
subjects Acoustics
Computational fluid dynamics
Condensed Matter Physics
Design
Dynamic pressure
Elastic waves
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid- and Aerodynamics
Heat and Mass Transfer
High temperature
Lax-Wendroff method
Mathematical models
Mechanical components
Original Article
Shock waves
Temperature ratio
Thermodynamics
Travel time
Wave rotors
title Basic design scheme for wave rotors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20design%20scheme%20for%20wave%20rotors&rft.jtitle=Shock%20waves&rft.au=Iancu,%20Florin&rft.date=2008-10-01&rft.volume=18&rft.issue=5&rft.spage=365&rft.epage=378&rft.pages=365-378&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-008-0165-7&rft_dat=%3Cproquest_cross%3E2520219872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520219872&rft_id=info:pmid/&rfr_iscdi=true