Computational general relativistic force-free electrodynamics

General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole (BH) shadows from the Galactic Center and the M87 galaxy provide a first dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-03, Vol.647
Hauptverfasser: Mahlmann, J F, Aloy, M A, Mewes, V, Cerdá-Durán, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 647
creator Mahlmann, J F
Aloy, M A
Mewes, V
Cerdá-Durán, P
description General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole (BH) shadows from the Galactic Center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as BHs and neutron stars. To do so, we probe their role in the formation of high energy phenomena such as magnetar flares and the highly variable teraelectronvolt emission of some active galactic nuclei. In this work, we present numerical strategies capable of modeling fully dynamical force-free magnetospheres of compact astrophysical objects. We provide implementation details and extensive testing of our implementation of general relativistic force-free electrodynamics in Cartesian and spherical coordinates using the infrastructure of the EINSTEIN TOOLKIT. The employed hyperbolic/parabolic cleaning of numerical errors with full general relativistic compatibility allows for fast advection of numerical errors in dynamical spacetimes. Such fast advection of divergence errors significantly improves the stability of the general relativistic force-free electrodynamics modeling of BH magnetospheres.
doi_str_mv 10.1051/0004-6361/202038907
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2520185023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520185023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1237-63ae79a46d0ccb93c1d585fecc697c3fbb3a0611e308a23011f7fb4022a61ae3</originalsourceid><addsrcrecordid>eNo9js1KxEAQhAdRMK4-gZeA57jd08lMcvAgi3-w4GXvy6TTI1mymXUmEXx7A4qnjyqKqlLqFuEeocI1AJSFIYNrDRqobsCeqQxL0gXY0pyr7D9xqa5SOixSY02ZetiE42me3NSH0Q35h4wSF0YZFuurT1PPuQ-RpfBRJJdBeIqh-x7dsed0rS68G5Lc_HGlds9Pu81rsX1_eds8bgtGTXbZdWIbV5oOmNuGGLuqrrwwm8Yy-bYlBwZRCGqnCRC99W0JWjuDTmil7n5rTzF8zpKm_SHMcfmb9rrSgHUFmugHq2JLGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520185023</pqid></control><display><type>article</type><title>Computational general relativistic force-free electrodynamics</title><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><source>AUTh Library subscriptions: EDP Sciences</source><source>EZB Electronic Journals Library</source><creator>Mahlmann, J F ; Aloy, M A ; Mewes, V ; Cerdá-Durán, P</creator><creatorcontrib>Mahlmann, J F ; Aloy, M A ; Mewes, V ; Cerdá-Durán, P</creatorcontrib><description>General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole (BH) shadows from the Galactic Center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as BHs and neutron stars. To do so, we probe their role in the formation of high energy phenomena such as magnetar flares and the highly variable teraelectronvolt emission of some active galactic nuclei. In this work, we present numerical strategies capable of modeling fully dynamical force-free magnetospheres of compact astrophysical objects. We provide implementation details and extensive testing of our implementation of general relativistic force-free electrodynamics in Cartesian and spherical coordinates using the infrastructure of the EINSTEIN TOOLKIT. The employed hyperbolic/parabolic cleaning of numerical errors with full general relativistic compatibility allows for fast advection of numerical errors in dynamical spacetimes. Such fast advection of divergence errors significantly improves the stability of the general relativistic force-free electrodynamics modeling of BH magnetospheres.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202038907</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Active galactic nuclei ; Advection ; Astronomical models ; Black holes ; Cartesian coordinates ; Deposition ; Divergence ; Electrodynamics ; Extreme environments ; Galaxies ; High energy astronomy ; Magnetars ; Magnetic fields ; Magnetospheres ; Mathematical analysis ; Neutron stars ; Outflow ; Plasma (physics) ; Relativistic effects ; Spherical coordinates ; Topology</subject><ispartof>Astronomy and astrophysics (Berlin), 2021-03, Vol.647</ispartof><rights>Copyright EDP Sciences Mar 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1237-63ae79a46d0ccb93c1d585fecc697c3fbb3a0611e308a23011f7fb4022a61ae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahlmann, J F</creatorcontrib><creatorcontrib>Aloy, M A</creatorcontrib><creatorcontrib>Mewes, V</creatorcontrib><creatorcontrib>Cerdá-Durán, P</creatorcontrib><title>Computational general relativistic force-free electrodynamics</title><title>Astronomy and astrophysics (Berlin)</title><description>General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole (BH) shadows from the Galactic Center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as BHs and neutron stars. To do so, we probe their role in the formation of high energy phenomena such as magnetar flares and the highly variable teraelectronvolt emission of some active galactic nuclei. In this work, we present numerical strategies capable of modeling fully dynamical force-free magnetospheres of compact astrophysical objects. We provide implementation details and extensive testing of our implementation of general relativistic force-free electrodynamics in Cartesian and spherical coordinates using the infrastructure of the EINSTEIN TOOLKIT. The employed hyperbolic/parabolic cleaning of numerical errors with full general relativistic compatibility allows for fast advection of numerical errors in dynamical spacetimes. Such fast advection of divergence errors significantly improves the stability of the general relativistic force-free electrodynamics modeling of BH magnetospheres.</description><subject>Active galactic nuclei</subject><subject>Advection</subject><subject>Astronomical models</subject><subject>Black holes</subject><subject>Cartesian coordinates</subject><subject>Deposition</subject><subject>Divergence</subject><subject>Electrodynamics</subject><subject>Extreme environments</subject><subject>Galaxies</subject><subject>High energy astronomy</subject><subject>Magnetars</subject><subject>Magnetic fields</subject><subject>Magnetospheres</subject><subject>Mathematical analysis</subject><subject>Neutron stars</subject><subject>Outflow</subject><subject>Plasma (physics)</subject><subject>Relativistic effects</subject><subject>Spherical coordinates</subject><subject>Topology</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9js1KxEAQhAdRMK4-gZeA57jd08lMcvAgi3-w4GXvy6TTI1mymXUmEXx7A4qnjyqKqlLqFuEeocI1AJSFIYNrDRqobsCeqQxL0gXY0pyr7D9xqa5SOixSY02ZetiE42me3NSH0Q35h4wSF0YZFuurT1PPuQ-RpfBRJJdBeIqh-x7dsed0rS68G5Lc_HGlds9Pu81rsX1_eds8bgtGTXbZdWIbV5oOmNuGGLuqrrwwm8Yy-bYlBwZRCGqnCRC99W0JWjuDTmil7n5rTzF8zpKm_SHMcfmb9rrSgHUFmugHq2JLGA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Mahlmann, J F</creator><creator>Aloy, M A</creator><creator>Mewes, V</creator><creator>Cerdá-Durán, P</creator><general>EDP Sciences</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210301</creationdate><title>Computational general relativistic force-free electrodynamics</title><author>Mahlmann, J F ; Aloy, M A ; Mewes, V ; Cerdá-Durán, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1237-63ae79a46d0ccb93c1d585fecc697c3fbb3a0611e308a23011f7fb4022a61ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active galactic nuclei</topic><topic>Advection</topic><topic>Astronomical models</topic><topic>Black holes</topic><topic>Cartesian coordinates</topic><topic>Deposition</topic><topic>Divergence</topic><topic>Electrodynamics</topic><topic>Extreme environments</topic><topic>Galaxies</topic><topic>High energy astronomy</topic><topic>Magnetars</topic><topic>Magnetic fields</topic><topic>Magnetospheres</topic><topic>Mathematical analysis</topic><topic>Neutron stars</topic><topic>Outflow</topic><topic>Plasma (physics)</topic><topic>Relativistic effects</topic><topic>Spherical coordinates</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahlmann, J F</creatorcontrib><creatorcontrib>Aloy, M A</creatorcontrib><creatorcontrib>Mewes, V</creatorcontrib><creatorcontrib>Cerdá-Durán, P</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahlmann, J F</au><au>Aloy, M A</au><au>Mewes, V</au><au>Cerdá-Durán, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational general relativistic force-free electrodynamics</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>647</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole (BH) shadows from the Galactic Center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as BHs and neutron stars. To do so, we probe their role in the formation of high energy phenomena such as magnetar flares and the highly variable teraelectronvolt emission of some active galactic nuclei. In this work, we present numerical strategies capable of modeling fully dynamical force-free magnetospheres of compact astrophysical objects. We provide implementation details and extensive testing of our implementation of general relativistic force-free electrodynamics in Cartesian and spherical coordinates using the infrastructure of the EINSTEIN TOOLKIT. The employed hyperbolic/parabolic cleaning of numerical errors with full general relativistic compatibility allows for fast advection of numerical errors in dynamical spacetimes. Such fast advection of divergence errors significantly improves the stability of the general relativistic force-free electrodynamics modeling of BH magnetospheres.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202038907</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2021-03, Vol.647
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2520185023
source EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX; AUTh Library subscriptions: EDP Sciences; EZB Electronic Journals Library
subjects Active galactic nuclei
Advection
Astronomical models
Black holes
Cartesian coordinates
Deposition
Divergence
Electrodynamics
Extreme environments
Galaxies
High energy astronomy
Magnetars
Magnetic fields
Magnetospheres
Mathematical analysis
Neutron stars
Outflow
Plasma (physics)
Relativistic effects
Spherical coordinates
Topology
title Computational general relativistic force-free electrodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20general%20relativistic%20force-free%20electrodynamics&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Mahlmann,%20J%20F&rft.date=2021-03-01&rft.volume=647&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202038907&rft_dat=%3Cproquest%3E2520185023%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520185023&rft_id=info:pmid/&rfr_iscdi=true