Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduc...
Gespeichert in:
Veröffentlicht in: | SAE International journal of engines 2009-01, Vol.1 (1), p.1196-1204, Article 2008-01-2467 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1204 |
---|---|
container_issue | 1 |
container_start_page | 1196 |
container_title | SAE International journal of engines |
container_volume | 1 |
creator | Sluder, C. Scott Storey, John M. E Lewis, Samuel A Styles, Dan Giuliano, Julia Hoard, John W |
description | Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting
in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM)
and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts
of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest
at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce
deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that
a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest
that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways
toward reduced EGR cooler fouling. |
doi_str_mv | 10.4271/2008-01-2467 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2520149683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26308350</jstor_id><sourcerecordid>26308350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</originalsourceid><addsrcrecordid>eNpVkM9rHCEUx4fSQtO0t14LQq-Z5vljdKa3stlsAikpIT3LW0cTl4lu1SXdY__zOtmSUESeysePvm_TfKTwRTBFTxlA3wJtmZDqVXNEByFbPgjx-nnN5dvmXc4bAKmAw1Hz52I_pmgwrWPIBMNIfmAq3uwmLJZ8x1JsIj6Q5eqGLGKc6u7MbmP2JX8lS-esKZlER1aYyfkUH8lNvXfyhGIo5NY-bG3Cskv1cLZf__YjFh8DWWDBaZ_L--aNwynbD__qcfPzfHm7uGivrleXi29XrekYLy0io2CpGM1g13JUrjPOGGF6oxQ4U7sZseeUdqqj3VopyQZu-rUDgbzjoPhx8_ng3ab4a2dz0Zu4S6E-qVnHgIpB9rxSJwfKpJhzsk5vk3_AtNcU9ByynkPWUGsNueLtAc9otQ81rPDUHU4v8v_5Twd-k0tMz24mOfS8g5dP3vu7-0efrJ7Fddpwp-k86CD5XxR3k84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520149683</pqid></control><display><type>article</type><title>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</title><source>Jstor Complete Legacy</source><creator>Sluder, C. Scott ; Storey, John M. E ; Lewis, Samuel A ; Styles, Dan ; Giuliano, Julia ; Hoard, John W</creator><creatorcontrib>Sluder, C. Scott ; Storey, John M. E ; Lewis, Samuel A ; Styles, Dan ; Giuliano, Julia ; Hoard, John W</creatorcontrib><description>Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting
in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM)
and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts
of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest
at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce
deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that
a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest
that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways
toward reduced EGR cooler fouling.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2008-01-2467</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Automotive engineering ; Average linear density ; Boiling points ; Catalysts ; Coolants ; Coolers ; Deposition ; Diesel engines ; Engines ; Exhaust gases ; Flow velocity ; Fouling ; Gas flow ; Gas temperature ; Gases ; Heat exchangers ; Hydrocarbons ; Nitrogen oxides ; Oxidation ; Particulate emissions ; Speciation ; Temperature ; Tubes</subject><ispartof>SAE International journal of engines, 2009-01, Vol.1 (1), p.1196-1204, Article 2008-01-2467</ispartof><rights>Copyright © 2008 SAE International</rights><rights>Copyright ® 2008 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</citedby><cites>FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26308350$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26308350$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27926,27927,58019,58252</link.rule.ids></links><search><creatorcontrib>Sluder, C. Scott</creatorcontrib><creatorcontrib>Storey, John M. E</creatorcontrib><creatorcontrib>Lewis, Samuel A</creatorcontrib><creatorcontrib>Styles, Dan</creatorcontrib><creatorcontrib>Giuliano, Julia</creatorcontrib><creatorcontrib>Hoard, John W</creatorcontrib><title>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</title><title>SAE International journal of engines</title><description>Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting
in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM)
and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts
of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest
at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce
deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that
a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest
that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways
toward reduced EGR cooler fouling.</description><subject>Automotive engineering</subject><subject>Average linear density</subject><subject>Boiling points</subject><subject>Catalysts</subject><subject>Coolants</subject><subject>Coolers</subject><subject>Deposition</subject><subject>Diesel engines</subject><subject>Engines</subject><subject>Exhaust gases</subject><subject>Flow velocity</subject><subject>Fouling</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Gases</subject><subject>Heat exchangers</subject><subject>Hydrocarbons</subject><subject>Nitrogen oxides</subject><subject>Oxidation</subject><subject>Particulate emissions</subject><subject>Speciation</subject><subject>Temperature</subject><subject>Tubes</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkM9rHCEUx4fSQtO0t14LQq-Z5vljdKa3stlsAikpIT3LW0cTl4lu1SXdY__zOtmSUESeysePvm_TfKTwRTBFTxlA3wJtmZDqVXNEByFbPgjx-nnN5dvmXc4bAKmAw1Hz52I_pmgwrWPIBMNIfmAq3uwmLJZ8x1JsIj6Q5eqGLGKc6u7MbmP2JX8lS-esKZlER1aYyfkUH8lNvXfyhGIo5NY-bG3Cskv1cLZf__YjFh8DWWDBaZ_L--aNwynbD__qcfPzfHm7uGivrleXi29XrekYLy0io2CpGM1g13JUrjPOGGF6oxQ4U7sZseeUdqqj3VopyQZu-rUDgbzjoPhx8_ng3ab4a2dz0Zu4S6E-qVnHgIpB9rxSJwfKpJhzsk5vk3_AtNcU9ByynkPWUGsNueLtAc9otQ81rPDUHU4v8v_5Twd-k0tMz24mOfS8g5dP3vu7-0efrJ7Fddpwp-k86CD5XxR3k84</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Sluder, C. Scott</creator><creator>Storey, John M. E</creator><creator>Lewis, Samuel A</creator><creator>Styles, Dan</creator><creator>Giuliano, Julia</creator><creator>Hoard, John W</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090101</creationdate><title>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</title><author>Sluder, C. Scott ; Storey, John M. E ; Lewis, Samuel A ; Styles, Dan ; Giuliano, Julia ; Hoard, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automotive engineering</topic><topic>Average linear density</topic><topic>Boiling points</topic><topic>Catalysts</topic><topic>Coolants</topic><topic>Coolers</topic><topic>Deposition</topic><topic>Diesel engines</topic><topic>Engines</topic><topic>Exhaust gases</topic><topic>Flow velocity</topic><topic>Fouling</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Gases</topic><topic>Heat exchangers</topic><topic>Hydrocarbons</topic><topic>Nitrogen oxides</topic><topic>Oxidation</topic><topic>Particulate emissions</topic><topic>Speciation</topic><topic>Temperature</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sluder, C. Scott</creatorcontrib><creatorcontrib>Storey, John M. E</creatorcontrib><creatorcontrib>Lewis, Samuel A</creatorcontrib><creatorcontrib>Styles, Dan</creatorcontrib><creatorcontrib>Giuliano, Julia</creatorcontrib><creatorcontrib>Hoard, John W</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International journal of engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sluder, C. Scott</au><au>Storey, John M. E</au><au>Lewis, Samuel A</au><au>Styles, Dan</au><au>Giuliano, Julia</au><au>Hoard, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</atitle><jtitle>SAE International journal of engines</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>1</volume><issue>1</issue><spage>1196</spage><epage>1204</epage><pages>1196-1204</pages><artnum>2008-01-2467</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting
in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM)
and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts
of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest
at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce
deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that
a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest
that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways
toward reduced EGR cooler fouling.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2008-01-2467</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1946-3936 |
ispartof | SAE International journal of engines, 2009-01, Vol.1 (1), p.1196-1204, Article 2008-01-2467 |
issn | 1946-3936 1946-3944 1946-3944 |
language | eng |
recordid | cdi_proquest_journals_2520149683 |
source | Jstor Complete Legacy |
subjects | Automotive engineering Average linear density Boiling points Catalysts Coolants Coolers Deposition Diesel engines Engines Exhaust gases Flow velocity Fouling Gas flow Gas temperature Gases Heat exchangers Hydrocarbons Nitrogen oxides Oxidation Particulate emissions Speciation Temperature Tubes |
title | Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrocarbons%20and%20Particulate%20Matter%20in%20EGR%20Cooler%20Deposits:%20Effects%20of%20Gas%20Flow%20Rate,%20Coolant%20Temperature,%20and%20Oxidation%20Catalyst&rft.jtitle=SAE%20International%20journal%20of%20engines&rft.au=Sluder,%20C.%20Scott&rft.date=2009-01-01&rft.volume=1&rft.issue=1&rft.spage=1196&rft.epage=1204&rft.pages=1196-1204&rft.artnum=2008-01-2467&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2008-01-2467&rft_dat=%3Cjstor_proqu%3E26308350%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520149683&rft_id=info:pmid/&rft_jstor_id=26308350&rfr_iscdi=true |