Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of engines 2009-01, Vol.1 (1), p.1196-1204, Article 2008-01-2467
Hauptverfasser: Sluder, C. Scott, Storey, John M. E, Lewis, Samuel A, Styles, Dan, Giuliano, Julia, Hoard, John W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1204
container_issue 1
container_start_page 1196
container_title SAE International journal of engines
container_volume 1
creator Sluder, C. Scott
Storey, John M. E
Lewis, Samuel A
Styles, Dan
Giuliano, Julia
Hoard, John W
description Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways toward reduced EGR cooler fouling.
doi_str_mv 10.4271/2008-01-2467
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2520149683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26308350</jstor_id><sourcerecordid>26308350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</originalsourceid><addsrcrecordid>eNpVkM9rHCEUx4fSQtO0t14LQq-Z5vljdKa3stlsAikpIT3LW0cTl4lu1SXdY__zOtmSUESeysePvm_TfKTwRTBFTxlA3wJtmZDqVXNEByFbPgjx-nnN5dvmXc4bAKmAw1Hz52I_pmgwrWPIBMNIfmAq3uwmLJZ8x1JsIj6Q5eqGLGKc6u7MbmP2JX8lS-esKZlER1aYyfkUH8lNvXfyhGIo5NY-bG3Cskv1cLZf__YjFh8DWWDBaZ_L--aNwynbD__qcfPzfHm7uGivrleXi29XrekYLy0io2CpGM1g13JUrjPOGGF6oxQ4U7sZseeUdqqj3VopyQZu-rUDgbzjoPhx8_ng3ab4a2dz0Zu4S6E-qVnHgIpB9rxSJwfKpJhzsk5vk3_AtNcU9ByynkPWUGsNueLtAc9otQ81rPDUHU4v8v_5Twd-k0tMz24mOfS8g5dP3vu7-0efrJ7Fddpwp-k86CD5XxR3k84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520149683</pqid></control><display><type>article</type><title>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</title><source>Jstor Complete Legacy</source><creator>Sluder, C. Scott ; Storey, John M. E ; Lewis, Samuel A ; Styles, Dan ; Giuliano, Julia ; Hoard, John W</creator><creatorcontrib>Sluder, C. Scott ; Storey, John M. E ; Lewis, Samuel A ; Styles, Dan ; Giuliano, Julia ; Hoard, John W</creatorcontrib><description>Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways toward reduced EGR cooler fouling.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2008-01-2467</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Automotive engineering ; Average linear density ; Boiling points ; Catalysts ; Coolants ; Coolers ; Deposition ; Diesel engines ; Engines ; Exhaust gases ; Flow velocity ; Fouling ; Gas flow ; Gas temperature ; Gases ; Heat exchangers ; Hydrocarbons ; Nitrogen oxides ; Oxidation ; Particulate emissions ; Speciation ; Temperature ; Tubes</subject><ispartof>SAE International journal of engines, 2009-01, Vol.1 (1), p.1196-1204, Article 2008-01-2467</ispartof><rights>Copyright © 2008 SAE International</rights><rights>Copyright ® 2008 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</citedby><cites>FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26308350$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26308350$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27926,27927,58019,58252</link.rule.ids></links><search><creatorcontrib>Sluder, C. Scott</creatorcontrib><creatorcontrib>Storey, John M. E</creatorcontrib><creatorcontrib>Lewis, Samuel A</creatorcontrib><creatorcontrib>Styles, Dan</creatorcontrib><creatorcontrib>Giuliano, Julia</creatorcontrib><creatorcontrib>Hoard, John W</creatorcontrib><title>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</title><title>SAE International journal of engines</title><description>Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways toward reduced EGR cooler fouling.</description><subject>Automotive engineering</subject><subject>Average linear density</subject><subject>Boiling points</subject><subject>Catalysts</subject><subject>Coolants</subject><subject>Coolers</subject><subject>Deposition</subject><subject>Diesel engines</subject><subject>Engines</subject><subject>Exhaust gases</subject><subject>Flow velocity</subject><subject>Fouling</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Gases</subject><subject>Heat exchangers</subject><subject>Hydrocarbons</subject><subject>Nitrogen oxides</subject><subject>Oxidation</subject><subject>Particulate emissions</subject><subject>Speciation</subject><subject>Temperature</subject><subject>Tubes</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkM9rHCEUx4fSQtO0t14LQq-Z5vljdKa3stlsAikpIT3LW0cTl4lu1SXdY__zOtmSUESeysePvm_TfKTwRTBFTxlA3wJtmZDqVXNEByFbPgjx-nnN5dvmXc4bAKmAw1Hz52I_pmgwrWPIBMNIfmAq3uwmLJZ8x1JsIj6Q5eqGLGKc6u7MbmP2JX8lS-esKZlER1aYyfkUH8lNvXfyhGIo5NY-bG3Cskv1cLZf__YjFh8DWWDBaZ_L--aNwynbD__qcfPzfHm7uGivrleXi29XrekYLy0io2CpGM1g13JUrjPOGGF6oxQ4U7sZseeUdqqj3VopyQZu-rUDgbzjoPhx8_ng3ab4a2dz0Zu4S6E-qVnHgIpB9rxSJwfKpJhzsk5vk3_AtNcU9ByynkPWUGsNueLtAc9otQ81rPDUHU4v8v_5Twd-k0tMz24mOfS8g5dP3vu7-0efrJ7Fddpwp-k86CD5XxR3k84</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Sluder, C. Scott</creator><creator>Storey, John M. E</creator><creator>Lewis, Samuel A</creator><creator>Styles, Dan</creator><creator>Giuliano, Julia</creator><creator>Hoard, John W</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090101</creationdate><title>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</title><author>Sluder, C. Scott ; Storey, John M. E ; Lewis, Samuel A ; Styles, Dan ; Giuliano, Julia ; Hoard, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-aa210e14dc9eb6d7f5cfcc4c8c770fc703da831157515b776293c8bf04a353073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automotive engineering</topic><topic>Average linear density</topic><topic>Boiling points</topic><topic>Catalysts</topic><topic>Coolants</topic><topic>Coolers</topic><topic>Deposition</topic><topic>Diesel engines</topic><topic>Engines</topic><topic>Exhaust gases</topic><topic>Flow velocity</topic><topic>Fouling</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Gases</topic><topic>Heat exchangers</topic><topic>Hydrocarbons</topic><topic>Nitrogen oxides</topic><topic>Oxidation</topic><topic>Particulate emissions</topic><topic>Speciation</topic><topic>Temperature</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sluder, C. Scott</creatorcontrib><creatorcontrib>Storey, John M. E</creatorcontrib><creatorcontrib>Lewis, Samuel A</creatorcontrib><creatorcontrib>Styles, Dan</creatorcontrib><creatorcontrib>Giuliano, Julia</creatorcontrib><creatorcontrib>Hoard, John W</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International journal of engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sluder, C. Scott</au><au>Storey, John M. E</au><au>Lewis, Samuel A</au><au>Styles, Dan</au><au>Giuliano, Julia</au><au>Hoard, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst</atitle><jtitle>SAE International journal of engines</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>1</volume><issue>1</issue><spage>1196</spage><epage>1204</epage><pages>1196-1204</pages><artnum>2008-01-2467</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NO X emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C 15 – C 25 were deposited and retained in the surrogate tubes. Analysis of the deposit mass of eicosane (C 20 ) showed that the deposition of HCs is very sensitive to the coolant temperature in the range investigated. The results suggest that use of an oxidation catalyst and/or reduction of the amount of high-boiling point HC species in the fuel may be pathways toward reduced EGR cooler fouling.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2008-01-2467</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-3936
ispartof SAE International journal of engines, 2009-01, Vol.1 (1), p.1196-1204, Article 2008-01-2467
issn 1946-3936
1946-3944
1946-3944
language eng
recordid cdi_proquest_journals_2520149683
source Jstor Complete Legacy
subjects Automotive engineering
Average linear density
Boiling points
Catalysts
Coolants
Coolers
Deposition
Diesel engines
Engines
Exhaust gases
Flow velocity
Fouling
Gas flow
Gas temperature
Gases
Heat exchangers
Hydrocarbons
Nitrogen oxides
Oxidation
Particulate emissions
Speciation
Temperature
Tubes
title Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrocarbons%20and%20Particulate%20Matter%20in%20EGR%20Cooler%20Deposits:%20Effects%20of%20Gas%20Flow%20Rate,%20Coolant%20Temperature,%20and%20Oxidation%20Catalyst&rft.jtitle=SAE%20International%20journal%20of%20engines&rft.au=Sluder,%20C.%20Scott&rft.date=2009-01-01&rft.volume=1&rft.issue=1&rft.spage=1196&rft.epage=1204&rft.pages=1196-1204&rft.artnum=2008-01-2467&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2008-01-2467&rft_dat=%3Cjstor_proqu%3E26308350%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520149683&rft_id=info:pmid/&rft_jstor_id=26308350&rfr_iscdi=true