The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

In-cylinder flow and combustion processes simulated with the standard k -ε turbulence model and with an alternative model—employing a non-linear, quadratic equation for the turbulent stresses—are contrasted for both motored and fired engine operation at two loads. For motored operation, the differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of engines 2009-01, Vol.1 (1), p.991-1003, Article 2008-01-1363
Hauptverfasser: Fife, Matthew E, Miles, Paul C, Bergin, Michael J, Reitz, Rolf D, Torres, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1003
container_issue 1
container_start_page 991
container_title SAE International journal of engines
container_volume 1
creator Fife, Matthew E
Miles, Paul C
Bergin, Michael J
Reitz, Rolf D
Torres, David J
description In-cylinder flow and combustion processes simulated with the standard k -ε turbulence model and with an alternative model—employing a non-linear, quadratic equation for the turbulent stresses—are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NO x emissions. The turbulence model impacts entrainment and jet velocity; this is believed to be the major factor influencing the flow structure development and the formation of NO x emissions. Like the motored simulations, major differences in the distribution and magnitude of turbulent kinetic energy and time scale are seen—differences which are likely to impact the modeled combustion behavior.
doi_str_mv 10.4271/2008-01-1363
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2520149634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26308335</jstor_id><sourcerecordid>26308335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-8af554e5e2ff875527b51ef92e526adc82480380f1de45865781b1da7d67ae5f3</originalsourceid><addsrcrecordid>eNpVkEtr4zAURk1poa_ZzXZATLfjVm_Ly5L0EQgtTDJrocRXiYIjpZJN6L8fGZeWLoTEd4-O0FcUPwm-5bQidxRjVWJSEibZSXFBai5LVnN--nlm8ry4TGmHsawwwxfFcbkFNNsfzLpDwSKDXoIv586DiWjZx1Xfgu_QoouQEvoLrelc8GnrDih4tHD7_iMZLj-24YiMb9Ak7Fd9GnLkfE7Q82I6Q1MHCVr04DdZf12cWdMm-PGxXxX_Hh-Wk-dy_vo0m9zPyzWv6q5UxgrBQQC1VlVC0GolCNiagqDSNGtFucJMYUsa4EJJUSmyIo2pGlkZEJZdFTej9xDDWw-p07vQR5-f1FRQTHgtGc_Un5Fax5BSBKsP0e1NfNcE66FaPVSrMdFDtRkvRzwZ0M53kIXDb037Jf_O_xr5XepC_HRTybBiTOT573G-dZvt0UXQgzgv8BudHbquCfsPYY2PnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520149634</pqid></control><display><type>article</type><title>The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Fife, Matthew E ; Miles, Paul C ; Bergin, Michael J ; Reitz, Rolf D ; Torres, David J</creator><creatorcontrib>Fife, Matthew E ; Miles, Paul C ; Bergin, Michael J ; Reitz, Rolf D ; Torres, David J</creatorcontrib><description>In-cylinder flow and combustion processes simulated with the standard k -ε turbulence model and with an alternative model—employing a non-linear, quadratic equation for the turbulent stresses—are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NO x emissions. The turbulence model impacts entrainment and jet velocity; this is believed to be the major factor influencing the flow structure development and the formation of NO x emissions. Like the motored simulations, major differences in the distribution and magnitude of turbulent kinetic energy and time scale are seen—differences which are likely to impact the modeled combustion behavior.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2008-01-1363</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Anisotropy ; Combustion ; Computational fluid dynamics ; Diesel engines ; Energy levels ; Engines ; Flow structures ; Flow velocity ; K-epsilon turbulence model ; Kinetic energy ; Modeling ; Quadratic equations ; Shear stress ; Simulations ; Spatial distribution ; Stress tensors ; Turbulence models</subject><ispartof>SAE International journal of engines, 2009-01, Vol.1 (1), p.991-1003, Article 2008-01-1363</ispartof><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-8af554e5e2ff875527b51ef92e526adc82480380f1de45865781b1da7d67ae5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26308335$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26308335$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Fife, Matthew E</creatorcontrib><creatorcontrib>Miles, Paul C</creatorcontrib><creatorcontrib>Bergin, Michael J</creatorcontrib><creatorcontrib>Reitz, Rolf D</creatorcontrib><creatorcontrib>Torres, David J</creatorcontrib><title>The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine</title><title>SAE International journal of engines</title><description>In-cylinder flow and combustion processes simulated with the standard k -ε turbulence model and with an alternative model—employing a non-linear, quadratic equation for the turbulent stresses—are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NO x emissions. The turbulence model impacts entrainment and jet velocity; this is believed to be the major factor influencing the flow structure development and the formation of NO x emissions. Like the motored simulations, major differences in the distribution and magnitude of turbulent kinetic energy and time scale are seen—differences which are likely to impact the modeled combustion behavior.</description><subject>Anisotropy</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Diesel engines</subject><subject>Energy levels</subject><subject>Engines</subject><subject>Flow structures</subject><subject>Flow velocity</subject><subject>K-epsilon turbulence model</subject><subject>Kinetic energy</subject><subject>Modeling</subject><subject>Quadratic equations</subject><subject>Shear stress</subject><subject>Simulations</subject><subject>Spatial distribution</subject><subject>Stress tensors</subject><subject>Turbulence models</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkEtr4zAURk1poa_ZzXZATLfjVm_Ly5L0EQgtTDJrocRXiYIjpZJN6L8fGZeWLoTEd4-O0FcUPwm-5bQidxRjVWJSEibZSXFBai5LVnN--nlm8ry4TGmHsawwwxfFcbkFNNsfzLpDwSKDXoIv586DiWjZx1Xfgu_QoouQEvoLrelc8GnrDih4tHD7_iMZLj-24YiMb9Ak7Fd9GnLkfE7Q82I6Q1MHCVr04DdZf12cWdMm-PGxXxX_Hh-Wk-dy_vo0m9zPyzWv6q5UxgrBQQC1VlVC0GolCNiagqDSNGtFucJMYUsa4EJJUSmyIo2pGlkZEJZdFTej9xDDWw-p07vQR5-f1FRQTHgtGc_Un5Fax5BSBKsP0e1NfNcE66FaPVSrMdFDtRkvRzwZ0M53kIXDb037Jf_O_xr5XepC_HRTybBiTOT573G-dZvt0UXQgzgv8BudHbquCfsPYY2PnQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Fife, Matthew E</creator><creator>Miles, Paul C</creator><creator>Bergin, Michael J</creator><creator>Reitz, Rolf D</creator><creator>Torres, David J</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090101</creationdate><title>The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine</title><author>Fife, Matthew E ; Miles, Paul C ; Bergin, Michael J ; Reitz, Rolf D ; Torres, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-8af554e5e2ff875527b51ef92e526adc82480380f1de45865781b1da7d67ae5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anisotropy</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Diesel engines</topic><topic>Energy levels</topic><topic>Engines</topic><topic>Flow structures</topic><topic>Flow velocity</topic><topic>K-epsilon turbulence model</topic><topic>Kinetic energy</topic><topic>Modeling</topic><topic>Quadratic equations</topic><topic>Shear stress</topic><topic>Simulations</topic><topic>Spatial distribution</topic><topic>Stress tensors</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fife, Matthew E</creatorcontrib><creatorcontrib>Miles, Paul C</creatorcontrib><creatorcontrib>Bergin, Michael J</creatorcontrib><creatorcontrib>Reitz, Rolf D</creatorcontrib><creatorcontrib>Torres, David J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International journal of engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fife, Matthew E</au><au>Miles, Paul C</au><au>Bergin, Michael J</au><au>Reitz, Rolf D</au><au>Torres, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine</atitle><jtitle>SAE International journal of engines</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>1</volume><issue>1</issue><spage>991</spage><epage>1003</epage><pages>991-1003</pages><artnum>2008-01-1363</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>In-cylinder flow and combustion processes simulated with the standard k -ε turbulence model and with an alternative model—employing a non-linear, quadratic equation for the turbulent stresses—are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NO x emissions. The turbulence model impacts entrainment and jet velocity; this is believed to be the major factor influencing the flow structure development and the formation of NO x emissions. Like the motored simulations, major differences in the distribution and magnitude of turbulent kinetic energy and time scale are seen—differences which are likely to impact the modeled combustion behavior.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2008-01-1363</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-3936
ispartof SAE International journal of engines, 2009-01, Vol.1 (1), p.991-1003, Article 2008-01-1363
issn 1946-3936
1946-3944
1946-3944
language eng
recordid cdi_proquest_journals_2520149634
source JSTOR Archive Collection A-Z Listing
subjects Anisotropy
Combustion
Computational fluid dynamics
Diesel engines
Energy levels
Engines
Flow structures
Flow velocity
K-epsilon turbulence model
Kinetic energy
Modeling
Quadratic equations
Shear stress
Simulations
Spatial distribution
Stress tensors
Turbulence models
title The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20a%20Non-Linear%20Turbulent%20Stress%20Relationship%20on%20Simulations%20of%20Flow%20and%20Combustion%20in%20an%20HSDI%20Diesel%20Engine&rft.jtitle=SAE%20International%20journal%20of%20engines&rft.au=Fife,%20Matthew%20E&rft.date=2009-01-01&rft.volume=1&rft.issue=1&rft.spage=991&rft.epage=1003&rft.pages=991-1003&rft.artnum=2008-01-1363&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2008-01-1363&rft_dat=%3Cjstor_proqu%3E26308335%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520149634&rft_id=info:pmid/&rft_jstor_id=26308335&rfr_iscdi=true