Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators
Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superio...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2021-05, Vol.15 (5), p.346-353 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | 5 |
container_start_page | 346 |
container_title | Nature photonics |
container_volume | 15 |
creator | Jin, Warren Yang, Qi-Fan Chang, Lin Shen, Boqiang Wang, Heming Leal, Mark A. Wu, Lue Gao, Maodong Feshali, Avi Paniccia, Mario Vahala, Kerry J. Bowers, John E. |
description | Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high
Q
factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz
2
Hz
−1
to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high
Q
factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems.
Using CMOS-ready ultra-high-
Q
microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz
2
Hz
−1
, corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms. |
doi_str_mv | 10.1038/s41566-021-00761-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520052693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520052693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4ESf2ElVAkYoqXmvLcSZtqjQpnkSofD2GINixmlncM49DyDlnl5xJfYUpV1lGmeCUsTzjND8gE56nhqbayMPfXqtjcoK4YUxJI8SEPM0h9B-0qVt4r8t-nSBsa9-15eD7LiSNQwiYDFi3q2T2sHymAVy5T4amD46u69WaPiYRCF0A7FoXGTwlR5VrEM5-6pS83t68zOZ0sby7n10vqJda9VQao5zWqSiYYCKHShWaF17owpcSIIZcptNSGaW1AaG58jIVXCulnPAmk1NyMc7dhe5tAOztphtCG1daoUT8UGRGxpQYU_FGxACV3YV668Lecma_3NnRnY3u7Lc7m0dIjhDGcLuC8Df6H-oTX5Zxgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520052693</pqid></control><display><type>article</type><title>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jin, Warren ; Yang, Qi-Fan ; Chang, Lin ; Shen, Boqiang ; Wang, Heming ; Leal, Mark A. ; Wu, Lue ; Gao, Maodong ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creator><creatorcontrib>Jin, Warren ; Yang, Qi-Fan ; Chang, Lin ; Shen, Boqiang ; Wang, Heming ; Leal, Mark A. ; Wu, Lue ; Gao, Maodong ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creatorcontrib><description>Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high
Q
factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz
2
Hz
−1
to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high
Q
factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems.
Using CMOS-ready ultra-high-
Q
microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz
2
Hz
−1
, corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-021-00761-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1090 ; 639/624/1020/1093 ; 639/624/399/1097 ; 639/624/400/385 ; Applied and Technical Physics ; CMOS ; Coherence ; Configurations ; Dispersion ; Lasers ; Noise ; Noise reduction ; Optical communication ; Physics ; Physics and Astronomy ; Platforms ; Q factors ; Quantum Physics ; Semiconductor lasers</subject><ispartof>Nature photonics, 2021-05, Vol.15 (5), p.346-353</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</citedby><cites>FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</cites><orcidid>0000-0002-4297-7982 ; 0000-0003-1783-1380 ; 0000-0003-4270-8296 ; 0000-0003-0697-508X ; 0000-0002-7503-7057 ; 0000-0002-6779-3741 ; 0000-0003-3861-0624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-021-00761-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-021-00761-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Yang, Qi-Fan</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Shen, Boqiang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Leal, Mark A.</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Gao, Maodong</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><title>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high
Q
factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz
2
Hz
−1
to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high
Q
factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems.
Using CMOS-ready ultra-high-
Q
microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz
2
Hz
−1
, corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms.</description><subject>639/624/1020/1090</subject><subject>639/624/1020/1093</subject><subject>639/624/399/1097</subject><subject>639/624/400/385</subject><subject>Applied and Technical Physics</subject><subject>CMOS</subject><subject>Coherence</subject><subject>Configurations</subject><subject>Dispersion</subject><subject>Lasers</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Optical communication</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Platforms</subject><subject>Q factors</subject><subject>Quantum Physics</subject><subject>Semiconductor lasers</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4ESf2ElVAkYoqXmvLcSZtqjQpnkSofD2GINixmlncM49DyDlnl5xJfYUpV1lGmeCUsTzjND8gE56nhqbayMPfXqtjcoK4YUxJI8SEPM0h9B-0qVt4r8t-nSBsa9-15eD7LiSNQwiYDFi3q2T2sHymAVy5T4amD46u69WaPiYRCF0A7FoXGTwlR5VrEM5-6pS83t68zOZ0sby7n10vqJda9VQao5zWqSiYYCKHShWaF17owpcSIIZcptNSGaW1AaG58jIVXCulnPAmk1NyMc7dhe5tAOztphtCG1daoUT8UGRGxpQYU_FGxACV3YV668Lecma_3NnRnY3u7Lc7m0dIjhDGcLuC8Df6H-oTX5Zxgw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Jin, Warren</creator><creator>Yang, Qi-Fan</creator><creator>Chang, Lin</creator><creator>Shen, Boqiang</creator><creator>Wang, Heming</creator><creator>Leal, Mark A.</creator><creator>Wu, Lue</creator><creator>Gao, Maodong</creator><creator>Feshali, Avi</creator><creator>Paniccia, Mario</creator><creator>Vahala, Kerry J.</creator><creator>Bowers, John E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0697-508X</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0002-6779-3741</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid></search><sort><creationdate>20210501</creationdate><title>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</title><author>Jin, Warren ; Yang, Qi-Fan ; Chang, Lin ; Shen, Boqiang ; Wang, Heming ; Leal, Mark A. ; Wu, Lue ; Gao, Maodong ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/1020/1090</topic><topic>639/624/1020/1093</topic><topic>639/624/399/1097</topic><topic>639/624/400/385</topic><topic>Applied and Technical Physics</topic><topic>CMOS</topic><topic>Coherence</topic><topic>Configurations</topic><topic>Dispersion</topic><topic>Lasers</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Optical communication</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Platforms</topic><topic>Q factors</topic><topic>Quantum Physics</topic><topic>Semiconductor lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Yang, Qi-Fan</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Shen, Boqiang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Leal, Mark A.</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Gao, Maodong</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Warren</au><au>Yang, Qi-Fan</au><au>Chang, Lin</au><au>Shen, Boqiang</au><au>Wang, Heming</au><au>Leal, Mark A.</au><au>Wu, Lue</au><au>Gao, Maodong</au><au>Feshali, Avi</au><au>Paniccia, Mario</au><au>Vahala, Kerry J.</au><au>Bowers, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>346</spage><epage>353</epage><pages>346-353</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high
Q
factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz
2
Hz
−1
to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high
Q
factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems.
Using CMOS-ready ultra-high-
Q
microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz
2
Hz
−1
, corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-021-00761-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0697-508X</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0002-6779-3741</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2021-05, Vol.15 (5), p.346-353 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2520052693 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/624/1020/1090 639/624/1020/1093 639/624/399/1097 639/624/400/385 Applied and Technical Physics CMOS Coherence Configurations Dispersion Lasers Noise Noise reduction Optical communication Physics Physics and Astronomy Platforms Q factors Quantum Physics Semiconductor lasers |
title | Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hertz-linewidth%20semiconductor%20lasers%20using%20CMOS-ready%20ultra-high-Q%20microresonators&rft.jtitle=Nature%20photonics&rft.au=Jin,%20Warren&rft.date=2021-05-01&rft.volume=15&rft.issue=5&rft.spage=346&rft.epage=353&rft.pages=346-353&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-021-00761-7&rft_dat=%3Cproquest_cross%3E2520052693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520052693&rft_id=info:pmid/&rfr_iscdi=true |