Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators

Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2021-05, Vol.15 (5), p.346-353
Hauptverfasser: Jin, Warren, Yang, Qi-Fan, Chang, Lin, Shen, Boqiang, Wang, Heming, Leal, Mark A., Wu, Lue, Gao, Maodong, Feshali, Avi, Paniccia, Mario, Vahala, Kerry J., Bowers, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 5
container_start_page 346
container_title Nature photonics
container_volume 15
creator Jin, Warren
Yang, Qi-Fan
Chang, Lin
Shen, Boqiang
Wang, Heming
Leal, Mark A.
Wu, Lue
Gao, Maodong
Feshali, Avi
Paniccia, Mario
Vahala, Kerry J.
Bowers, John E.
description Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high Q factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz 2  Hz −1 to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high Q factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems. Using CMOS-ready ultra-high- Q microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz 2  Hz −1 , corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms.
doi_str_mv 10.1038/s41566-021-00761-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2520052693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520052693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4ESf2ElVAkYoqXmvLcSZtqjQpnkSofD2GINixmlncM49DyDlnl5xJfYUpV1lGmeCUsTzjND8gE56nhqbayMPfXqtjcoK4YUxJI8SEPM0h9B-0qVt4r8t-nSBsa9-15eD7LiSNQwiYDFi3q2T2sHymAVy5T4amD46u69WaPiYRCF0A7FoXGTwlR5VrEM5-6pS83t68zOZ0sby7n10vqJda9VQao5zWqSiYYCKHShWaF17owpcSIIZcptNSGaW1AaG58jIVXCulnPAmk1NyMc7dhe5tAOztphtCG1daoUT8UGRGxpQYU_FGxACV3YV668Lecma_3NnRnY3u7Lc7m0dIjhDGcLuC8Df6H-oTX5Zxgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520052693</pqid></control><display><type>article</type><title>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jin, Warren ; Yang, Qi-Fan ; Chang, Lin ; Shen, Boqiang ; Wang, Heming ; Leal, Mark A. ; Wu, Lue ; Gao, Maodong ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creator><creatorcontrib>Jin, Warren ; Yang, Qi-Fan ; Chang, Lin ; Shen, Boqiang ; Wang, Heming ; Leal, Mark A. ; Wu, Lue ; Gao, Maodong ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</creatorcontrib><description>Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high Q factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz 2  Hz −1 to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high Q factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems. Using CMOS-ready ultra-high- Q microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz 2  Hz −1 , corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-021-00761-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1090 ; 639/624/1020/1093 ; 639/624/399/1097 ; 639/624/400/385 ; Applied and Technical Physics ; CMOS ; Coherence ; Configurations ; Dispersion ; Lasers ; Noise ; Noise reduction ; Optical communication ; Physics ; Physics and Astronomy ; Platforms ; Q factors ; Quantum Physics ; Semiconductor lasers</subject><ispartof>Nature photonics, 2021-05, Vol.15 (5), p.346-353</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</citedby><cites>FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</cites><orcidid>0000-0002-4297-7982 ; 0000-0003-1783-1380 ; 0000-0003-4270-8296 ; 0000-0003-0697-508X ; 0000-0002-7503-7057 ; 0000-0002-6779-3741 ; 0000-0003-3861-0624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-021-00761-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-021-00761-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Yang, Qi-Fan</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Shen, Boqiang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Leal, Mark A.</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Gao, Maodong</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><title>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high Q factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz 2  Hz −1 to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high Q factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems. Using CMOS-ready ultra-high- Q microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz 2  Hz −1 , corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms.</description><subject>639/624/1020/1090</subject><subject>639/624/1020/1093</subject><subject>639/624/399/1097</subject><subject>639/624/400/385</subject><subject>Applied and Technical Physics</subject><subject>CMOS</subject><subject>Coherence</subject><subject>Configurations</subject><subject>Dispersion</subject><subject>Lasers</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Optical communication</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Platforms</subject><subject>Q factors</subject><subject>Quantum Physics</subject><subject>Semiconductor lasers</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4ESf2ElVAkYoqXmvLcSZtqjQpnkSofD2GINixmlncM49DyDlnl5xJfYUpV1lGmeCUsTzjND8gE56nhqbayMPfXqtjcoK4YUxJI8SEPM0h9B-0qVt4r8t-nSBsa9-15eD7LiSNQwiYDFi3q2T2sHymAVy5T4amD46u69WaPiYRCF0A7FoXGTwlR5VrEM5-6pS83t68zOZ0sby7n10vqJda9VQao5zWqSiYYCKHShWaF17owpcSIIZcptNSGaW1AaG58jIVXCulnPAmk1NyMc7dhe5tAOztphtCG1daoUT8UGRGxpQYU_FGxACV3YV668Lecma_3NnRnY3u7Lc7m0dIjhDGcLuC8Df6H-oTX5Zxgw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Jin, Warren</creator><creator>Yang, Qi-Fan</creator><creator>Chang, Lin</creator><creator>Shen, Boqiang</creator><creator>Wang, Heming</creator><creator>Leal, Mark A.</creator><creator>Wu, Lue</creator><creator>Gao, Maodong</creator><creator>Feshali, Avi</creator><creator>Paniccia, Mario</creator><creator>Vahala, Kerry J.</creator><creator>Bowers, John E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0697-508X</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0002-6779-3741</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid></search><sort><creationdate>20210501</creationdate><title>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</title><author>Jin, Warren ; Yang, Qi-Fan ; Chang, Lin ; Shen, Boqiang ; Wang, Heming ; Leal, Mark A. ; Wu, Lue ; Gao, Maodong ; Feshali, Avi ; Paniccia, Mario ; Vahala, Kerry J. ; Bowers, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3995a8842b02027ef5b81bc28bcd3eec38a684d595889e2815c34218555a2c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/1020/1090</topic><topic>639/624/1020/1093</topic><topic>639/624/399/1097</topic><topic>639/624/400/385</topic><topic>Applied and Technical Physics</topic><topic>CMOS</topic><topic>Coherence</topic><topic>Configurations</topic><topic>Dispersion</topic><topic>Lasers</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Optical communication</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Platforms</topic><topic>Q factors</topic><topic>Quantum Physics</topic><topic>Semiconductor lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Warren</creatorcontrib><creatorcontrib>Yang, Qi-Fan</creatorcontrib><creatorcontrib>Chang, Lin</creatorcontrib><creatorcontrib>Shen, Boqiang</creatorcontrib><creatorcontrib>Wang, Heming</creatorcontrib><creatorcontrib>Leal, Mark A.</creatorcontrib><creatorcontrib>Wu, Lue</creatorcontrib><creatorcontrib>Gao, Maodong</creatorcontrib><creatorcontrib>Feshali, Avi</creatorcontrib><creatorcontrib>Paniccia, Mario</creatorcontrib><creatorcontrib>Vahala, Kerry J.</creatorcontrib><creatorcontrib>Bowers, John E.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Warren</au><au>Yang, Qi-Fan</au><au>Chang, Lin</au><au>Shen, Boqiang</au><au>Wang, Heming</au><au>Leal, Mark A.</au><au>Wu, Lue</au><au>Gao, Maodong</au><au>Feshali, Avi</au><au>Paniccia, Mario</au><au>Vahala, Kerry J.</au><au>Bowers, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>346</spage><epage>353</epage><pages>346-353</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical communications, metrology and sensing provide unrivalled performance. To transfer these capabilities from the laboratory to the real world, a key missing ingredient is a mass-produced integrated laser with superior coherence. Here, we bridge conventional semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated microresonators with a high Q factor of over 260 million and finesse over 42,000. A five-orders-of-magnitude noise reduction in the pump laser is demonstrated, enabling a frequency noise of 0.2 Hz 2  Hz −1 to be achieved in an electrically pumped integrated laser, with a corresponding short-term linewidth of 1.2 Hz. Moreover, the same configuration is shown to relieve the dispersion requirements for microcomb generation that have handicapped certain nonlinear platforms. The simultaneous realization of this high Q factor, highly coherent lasers and frequency combs using foundry-based technologies paves the way for volume manufacturing of a wide range of coherent optical systems. Using CMOS-ready ultra-high- Q microresonators, a highly coherent electrically pumped integrated laser with frequency noise of 0.2 Hz 2  Hz −1 , corresponding to a short-term linewidth of 1.2 Hz, is demonstrated. The device configuration is also found to relieve the dispersion requirements for microcomb generation that have limited certain nonlinear platforms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-021-00761-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4297-7982</orcidid><orcidid>https://orcid.org/0000-0003-1783-1380</orcidid><orcidid>https://orcid.org/0000-0003-4270-8296</orcidid><orcidid>https://orcid.org/0000-0003-0697-508X</orcidid><orcidid>https://orcid.org/0000-0002-7503-7057</orcidid><orcidid>https://orcid.org/0000-0002-6779-3741</orcidid><orcidid>https://orcid.org/0000-0003-3861-0624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2021-05, Vol.15 (5), p.346-353
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2520052693
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/624/1020/1090
639/624/1020/1093
639/624/399/1097
639/624/400/385
Applied and Technical Physics
CMOS
Coherence
Configurations
Dispersion
Lasers
Noise
Noise reduction
Optical communication
Physics
Physics and Astronomy
Platforms
Q factors
Quantum Physics
Semiconductor lasers
title Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hertz-linewidth%20semiconductor%20lasers%20using%20CMOS-ready%20ultra-high-Q%20microresonators&rft.jtitle=Nature%20photonics&rft.au=Jin,%20Warren&rft.date=2021-05-01&rft.volume=15&rft.issue=5&rft.spage=346&rft.epage=353&rft.pages=346-353&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-021-00761-7&rft_dat=%3Cproquest_cross%3E2520052693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520052693&rft_id=info:pmid/&rfr_iscdi=true