Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces
The Cauchy problem for the Hardy-Hénon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space \(\mathbb{R}^d\). Well-posedness for singular initial data and existence of non-radial forward self-similar solution of the problem are previ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chikami, Noboru Ikeda, Masahiro Taniguchi, Koichi |
description | The Cauchy problem for the Hardy-Hénon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space \(\mathbb{R}^d\). Well-posedness for singular initial data and existence of non-radial forward self-similar solution of the problem are previously shown only for the Hardy and Fujita cases (\(\gamma\le 0\)) in earlier works. The weighted spaces enable us to treat the potential \(|x|^{\gamma}\) as an increase or decrease of the weight, thereby we can prove well-posedness to the problem for all \(\gamma\) with \(-\min\{2,d\}0\)). As a byproduct of the well-posedness, the self-similar solutions to the problem are also constructed for all \(\gamma\) without restrictions. A non-existence result of local solution for supercritical data is also shown. Therefore our critical exponent \(s_c\) turns out to be optimal in regards to the solvability. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2520048349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520048349</sourcerecordid><originalsourceid>FETCH-proquest_journals_25200483493</originalsourceid><addsrcrecordid>eNqNjUFKAzEUhkNBsGjv8MB1ICYzWtfSMgvBjfvyOvOmfSVN0ryE0gN4GM_hxRyLB3D1w_d98M_U3Dr3qJeNtbdqIXIwxtinZ9u2bq4-31PhI3o4k_c6RaEhkAhgGGCM-Yx5ACE_auEje8wg0dfCMfxaKHuCbkouuvv-ChNMmHEbPfdAp4rXjgP0mQv31xPe7QsN8EZbkl0lkIQ9yb26GdELLf72Tj2sVx-vnU45nipJ2RxizWFSG9taY5qla17c_6ofzFFUCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520048349</pqid></control><display><type>article</type><title>Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces</title><source>Free E- Journals</source><creator>Chikami, Noboru ; Ikeda, Masahiro ; Taniguchi, Koichi</creator><creatorcontrib>Chikami, Noboru ; Ikeda, Masahiro ; Taniguchi, Koichi</creatorcontrib><description>The Cauchy problem for the Hardy-Hénon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space \(\mathbb{R}^d\). Well-posedness for singular initial data and existence of non-radial forward self-similar solution of the problem are previously shown only for the Hardy and Fujita cases (\(\gamma\le 0\)) in earlier works. The weighted spaces enable us to treat the potential \(|x|^{\gamma}\) as an increase or decrease of the weight, thereby we can prove well-posedness to the problem for all \(\gamma\) with \(-\min\{2,d\}<\gamma\) including the Hénon case (\(\gamma>0\)). As a byproduct of the well-posedness, the self-similar solutions to the problem are also constructed for all \(\gamma\) without restrictions. A non-existence result of local solution for supercritical data is also shown. Therefore our critical exponent \(s_c\) turns out to be optimal in regards to the solvability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cauchy problems ; Euclidean geometry ; Euclidean space ; Self-similarity ; Well posed problems</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chikami, Noboru</creatorcontrib><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Taniguchi, Koichi</creatorcontrib><title>Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces</title><title>arXiv.org</title><description>The Cauchy problem for the Hardy-Hénon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space \(\mathbb{R}^d\). Well-posedness for singular initial data and existence of non-radial forward self-similar solution of the problem are previously shown only for the Hardy and Fujita cases (\(\gamma\le 0\)) in earlier works. The weighted spaces enable us to treat the potential \(|x|^{\gamma}\) as an increase or decrease of the weight, thereby we can prove well-posedness to the problem for all \(\gamma\) with \(-\min\{2,d\}<\gamma\) including the Hénon case (\(\gamma>0\)). As a byproduct of the well-posedness, the self-similar solutions to the problem are also constructed for all \(\gamma\) without restrictions. A non-existence result of local solution for supercritical data is also shown. Therefore our critical exponent \(s_c\) turns out to be optimal in regards to the solvability.</description><subject>Cauchy problems</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Self-similarity</subject><subject>Well posed problems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUFKAzEUhkNBsGjv8MB1ICYzWtfSMgvBjfvyOvOmfSVN0ryE0gN4GM_hxRyLB3D1w_d98M_U3Dr3qJeNtbdqIXIwxtinZ9u2bq4-31PhI3o4k_c6RaEhkAhgGGCM-Yx5ACE_auEje8wg0dfCMfxaKHuCbkouuvv-ChNMmHEbPfdAp4rXjgP0mQv31xPe7QsN8EZbkl0lkIQ9yb26GdELLf72Tj2sVx-vnU45nipJ2RxizWFSG9taY5qla17c_6ofzFFUCQ</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Chikami, Noboru</creator><creator>Ikeda, Masahiro</creator><creator>Taniguchi, Koichi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210429</creationdate><title>Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces</title><author>Chikami, Noboru ; Ikeda, Masahiro ; Taniguchi, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25200483493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cauchy problems</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Self-similarity</topic><topic>Well posed problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Chikami, Noboru</creatorcontrib><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Taniguchi, Koichi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chikami, Noboru</au><au>Ikeda, Masahiro</au><au>Taniguchi, Koichi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces</atitle><jtitle>arXiv.org</jtitle><date>2021-04-29</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The Cauchy problem for the Hardy-Hénon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space \(\mathbb{R}^d\). Well-posedness for singular initial data and existence of non-radial forward self-similar solution of the problem are previously shown only for the Hardy and Fujita cases (\(\gamma\le 0\)) in earlier works. The weighted spaces enable us to treat the potential \(|x|^{\gamma}\) as an increase or decrease of the weight, thereby we can prove well-posedness to the problem for all \(\gamma\) with \(-\min\{2,d\}<\gamma\) including the Hénon case (\(\gamma>0\)). As a byproduct of the well-posedness, the self-similar solutions to the problem are also constructed for all \(\gamma\) without restrictions. A non-existence result of local solution for supercritical data is also shown. Therefore our critical exponent \(s_c\) turns out to be optimal in regards to the solvability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2520048349 |
source | Free E- Journals |
subjects | Cauchy problems Euclidean geometry Euclidean space Self-similarity Well posed problems |
title | Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20well-posedness%20and%20forward%20self-similar%20solution%20for%20the%20Hardy-H%C3%A9non%20parabolic%20equation%20in%20critical%20weighted%20Lebesgue%20spaces&rft.jtitle=arXiv.org&rft.au=Chikami,%20Noboru&rft.date=2021-04-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2520048349%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520048349&rft_id=info:pmid/&rfr_iscdi=true |