DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning

Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-05, Vol.40 (5), p.1508-1518
Hauptverfasser: Ryu, DongHun, Ryu, Dongmin, Baek, YoonSeok, Cho, Hyungjoo, Kim, Geon, Kim, Young Seo, Lee, Yongki, Kim, Yoosik, Ye, Jong Chul, Min, Hyun-Seok, Park, YongKeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1518
container_issue 5
container_start_page 1508
container_title IEEE transactions on medical imaging
container_volume 40
creator Ryu, DongHun
Ryu, Dongmin
Baek, YoonSeok
Cho, Hyungjoo
Kim, Geon
Kim, Young Seo
Lee, Yongki
Kim, Yoosik
Ye, Jong Chul
Min, Hyun-Seok
Park, YongKeun
description Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensional optical transfer function. This missing cone problem has been addressed through regularization algorithms that use a priori information, such as non-negativity and sample smoothness. However, the iterative nature of these algorithms and their parameter dependency make real-time visualization impossible. In this article, we propose and experimentally demonstrate a deep neural network, which we term DeepRegularizer, that rapidly improves the resolution of a three-dimensional refractive index map. Trained with pairs of datasets (a raw refractive index tomogram and a resolution-enhanced refractive index tomogram via the iterative total variation algorithm), the three-dimensional U-net-based convolutional neural network learns a transformation between the two tomogram domains. The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.
doi_str_mv 10.1109/TMI.2021.3058373
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2519967427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9351956</ieee_id><sourcerecordid>2519967427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ded1454c30a3637116632f03cd259b2566bb4e6c1cda043269e3ec5664a50fa73</originalsourceid><addsrcrecordid>eNqNkc-L1DAYhoMo7rh6FwQpeBGk45efbb3JuOrAiDDMwt5Kmn6dzdIm3aRF9K83ZcYVPHlpmvC8L1-eEPKSwppSqN4fvm3XDBhdc5AlL_gjsqJSljmT4uYxWQEryhxAsQvyLMY7ACokVE_JBedSqULBitx8Qhz3eJx7HewvDB-yvR5tm-0x-n6erHfZlbvVzuCAbsp8lx384I9Bj7fWZNtBH607Ztdx-S5V2Q51cGn3nDzpdB_xxXm9JNefrw6br_nu-5ft5uMuN1wUU95im4YShoPmiheUKsVZB9y0TFYNS2M2jUBlqGk1CM5UhRxNOhZaQqcLfknennrH4O9njFM92Giw77VDP8eaibKUUgguE_rmH_TOz8Gl6WomaVWpQrClEE6UCT7GgF09Bjvo8LOmUC_W62S9XqzXZ-sp8vpcPDcDtg-BP5oTUJ6AH9j4LhqLSegDBumJhCyVkumPlhs76UX8xs9uStF3_x9N9KsTbRH_UhVP15OK_wa6DKVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519967427</pqid></control><display><type>article</type><title>DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Ryu, DongHun ; Ryu, Dongmin ; Baek, YoonSeok ; Cho, Hyungjoo ; Kim, Geon ; Kim, Young Seo ; Lee, Yongki ; Kim, Yoosik ; Ye, Jong Chul ; Min, Hyun-Seok ; Park, YongKeun</creator><creatorcontrib>Ryu, DongHun ; Ryu, Dongmin ; Baek, YoonSeok ; Cho, Hyungjoo ; Kim, Geon ; Kim, Young Seo ; Lee, Yongki ; Kim, Yoosik ; Ye, Jong Chul ; Min, Hyun-Seok ; Park, YongKeun</creatorcontrib><description>Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensional optical transfer function. This missing cone problem has been addressed through regularization algorithms that use a priori information, such as non-negativity and sample smoothness. However, the iterative nature of these algorithms and their parameter dependency make real-time visualization impossible. In this article, we propose and experimentally demonstrate a deep neural network, which we term DeepRegularizer, that rapidly improves the resolution of a three-dimensional refractive index map. Trained with pairs of datasets (a raw refractive index tomogram and a resolution-enhanced refractive index tomogram via the iterative total variation algorithm), the three-dimensional U-net-based convolutional neural network learns a transformation between the two tomogram domains. The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3058373</identifier><identifier>PMID: 33566760</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer architecture ; Computer Science ; Computer Science, Interdisciplinary Applications ; Deep learning ; Diffraction ; Engineering ; Engineering, Biomedical ; Engineering, Electrical &amp; Electronic ; Imaging ; Imaging Science &amp; Photographic Technology ; Iterative methods ; Life Sciences &amp; Biomedicine ; Microprocessors ; Neural networks ; Optical diffraction ; optical diffraction tomography ; Optical imaging ; Optical transfer function ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Refractivity ; Regularization ; Resolution enhancement ; Science &amp; Technology ; Smoothness ; Technology ; Three-dimensional displays ; Tomography</subject><ispartof>IEEE transactions on medical imaging, 2021-05, Vol.40 (5), p.1508-1518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000645866500018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c347t-ded1454c30a3637116632f03cd259b2566bb4e6c1cda043269e3ec5664a50fa73</citedby><cites>FETCH-LOGICAL-c347t-ded1454c30a3637116632f03cd259b2566bb4e6c1cda043269e3ec5664a50fa73</cites><orcidid>0000-0001-9763-9609 ; 0000-0003-3283-3376 ; 0000-0003-0528-6661 ; 0000-0003-1132-6009 ; 0000-0002-3074-8429 ; 0000-0003-3064-4643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9351956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9351956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33566760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryu, DongHun</creatorcontrib><creatorcontrib>Ryu, Dongmin</creatorcontrib><creatorcontrib>Baek, YoonSeok</creatorcontrib><creatorcontrib>Cho, Hyungjoo</creatorcontrib><creatorcontrib>Kim, Geon</creatorcontrib><creatorcontrib>Kim, Young Seo</creatorcontrib><creatorcontrib>Lee, Yongki</creatorcontrib><creatorcontrib>Kim, Yoosik</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><creatorcontrib>Min, Hyun-Seok</creatorcontrib><creatorcontrib>Park, YongKeun</creatorcontrib><title>DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE T MED IMAGING</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensional optical transfer function. This missing cone problem has been addressed through regularization algorithms that use a priori information, such as non-negativity and sample smoothness. However, the iterative nature of these algorithms and their parameter dependency make real-time visualization impossible. In this article, we propose and experimentally demonstrate a deep neural network, which we term DeepRegularizer, that rapidly improves the resolution of a three-dimensional refractive index map. Trained with pairs of datasets (a raw refractive index tomogram and a resolution-enhanced refractive index tomogram via the iterative total variation algorithm), the three-dimensional U-net-based convolutional neural network learns a transformation between the two tomogram domains. The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Deep learning</subject><subject>Diffraction</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Imaging</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Iterative methods</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Optical diffraction</subject><subject>optical diffraction tomography</subject><subject>Optical imaging</subject><subject>Optical transfer function</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Refractivity</subject><subject>Regularization</subject><subject>Resolution enhancement</subject><subject>Science &amp; Technology</subject><subject>Smoothness</subject><subject>Technology</subject><subject>Three-dimensional displays</subject><subject>Tomography</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkc-L1DAYhoMo7rh6FwQpeBGk45efbb3JuOrAiDDMwt5Kmn6dzdIm3aRF9K83ZcYVPHlpmvC8L1-eEPKSwppSqN4fvm3XDBhdc5AlL_gjsqJSljmT4uYxWQEryhxAsQvyLMY7ACokVE_JBedSqULBitx8Qhz3eJx7HewvDB-yvR5tm-0x-n6erHfZlbvVzuCAbsp8lx384I9Bj7fWZNtBH607Ztdx-S5V2Q51cGn3nDzpdB_xxXm9JNefrw6br_nu-5ft5uMuN1wUU95im4YShoPmiheUKsVZB9y0TFYNS2M2jUBlqGk1CM5UhRxNOhZaQqcLfknennrH4O9njFM92Giw77VDP8eaibKUUgguE_rmH_TOz8Gl6WomaVWpQrClEE6UCT7GgF09Bjvo8LOmUC_W62S9XqzXZ-sp8vpcPDcDtg-BP5oTUJ6AH9j4LhqLSegDBumJhCyVkumPlhs76UX8xs9uStF3_x9N9KsTbRH_UhVP15OK_wa6DKVk</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ryu, DongHun</creator><creator>Ryu, Dongmin</creator><creator>Baek, YoonSeok</creator><creator>Cho, Hyungjoo</creator><creator>Kim, Geon</creator><creator>Kim, Young Seo</creator><creator>Lee, Yongki</creator><creator>Kim, Yoosik</creator><creator>Ye, Jong Chul</creator><creator>Min, Hyun-Seok</creator><creator>Park, YongKeun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid><orcidid>https://orcid.org/0000-0003-3283-3376</orcidid><orcidid>https://orcid.org/0000-0003-0528-6661</orcidid><orcidid>https://orcid.org/0000-0003-1132-6009</orcidid><orcidid>https://orcid.org/0000-0002-3074-8429</orcidid><orcidid>https://orcid.org/0000-0003-3064-4643</orcidid></search><sort><creationdate>20210501</creationdate><title>DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning</title><author>Ryu, DongHun ; Ryu, Dongmin ; Baek, YoonSeok ; Cho, Hyungjoo ; Kim, Geon ; Kim, Young Seo ; Lee, Yongki ; Kim, Yoosik ; Ye, Jong Chul ; Min, Hyun-Seok ; Park, YongKeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ded1454c30a3637116632f03cd259b2566bb4e6c1cda043269e3ec5664a50fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Deep learning</topic><topic>Diffraction</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Imaging</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Iterative methods</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Optical diffraction</topic><topic>optical diffraction tomography</topic><topic>Optical imaging</topic><topic>Optical transfer function</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Refractivity</topic><topic>Regularization</topic><topic>Resolution enhancement</topic><topic>Science &amp; Technology</topic><topic>Smoothness</topic><topic>Technology</topic><topic>Three-dimensional displays</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Ryu, DongHun</creatorcontrib><creatorcontrib>Ryu, Dongmin</creatorcontrib><creatorcontrib>Baek, YoonSeok</creatorcontrib><creatorcontrib>Cho, Hyungjoo</creatorcontrib><creatorcontrib>Kim, Geon</creatorcontrib><creatorcontrib>Kim, Young Seo</creatorcontrib><creatorcontrib>Lee, Yongki</creatorcontrib><creatorcontrib>Kim, Yoosik</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><creatorcontrib>Min, Hyun-Seok</creatorcontrib><creatorcontrib>Park, YongKeun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryu, DongHun</au><au>Ryu, Dongmin</au><au>Baek, YoonSeok</au><au>Cho, Hyungjoo</au><au>Kim, Geon</au><au>Kim, Young Seo</au><au>Lee, Yongki</au><au>Kim, Yoosik</au><au>Ye, Jong Chul</au><au>Min, Hyun-Seok</au><au>Park, YongKeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><stitle>IEEE T MED IMAGING</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>1508</spage><epage>1518</epage><pages>1508-1518</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensional optical transfer function. This missing cone problem has been addressed through regularization algorithms that use a priori information, such as non-negativity and sample smoothness. However, the iterative nature of these algorithms and their parameter dependency make real-time visualization impossible. In this article, we propose and experimentally demonstrate a deep neural network, which we term DeepRegularizer, that rapidly improves the resolution of a three-dimensional refractive index map. Trained with pairs of datasets (a raw refractive index tomogram and a resolution-enhanced refractive index tomogram via the iterative total variation algorithm), the three-dimensional U-net-based convolutional neural network learns a transformation between the two tomogram domains. The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>33566760</pmid><doi>10.1109/TMI.2021.3058373</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid><orcidid>https://orcid.org/0000-0003-3283-3376</orcidid><orcidid>https://orcid.org/0000-0003-0528-6661</orcidid><orcidid>https://orcid.org/0000-0003-1132-6009</orcidid><orcidid>https://orcid.org/0000-0002-3074-8429</orcidid><orcidid>https://orcid.org/0000-0003-3064-4643</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2021-05, Vol.40 (5), p.1508-1518
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2519967427
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Computer architecture
Computer Science
Computer Science, Interdisciplinary Applications
Deep learning
Diffraction
Engineering
Engineering, Biomedical
Engineering, Electrical & Electronic
Imaging
Imaging Science & Photographic Technology
Iterative methods
Life Sciences & Biomedicine
Microprocessors
Neural networks
Optical diffraction
optical diffraction tomography
Optical imaging
Optical transfer function
Radiology, Nuclear Medicine & Medical Imaging
Refractivity
Regularization
Resolution enhancement
Science & Technology
Smoothness
Technology
Three-dimensional displays
Tomography
title DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepRegularizer:%20Rapid%20Resolution%20Enhancement%20of%20Tomographic%20Imaging%20Using%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ryu,%20DongHun&rft.date=2021-05-01&rft.volume=40&rft.issue=5&rft.spage=1508&rft.epage=1518&rft.pages=1508-1518&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3058373&rft_dat=%3Cproquest_RIE%3E2519967427%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519967427&rft_id=info:pmid/33566760&rft_ieee_id=9351956&rfr_iscdi=true