Arabic Question Answering Systems: Gap Analysis

Question-answering (QA) systems aim to provide answers for given questions. The answers can be extracted or generated from either unstructured or structured text. Therefore, QA is considered an important field that can be used to evaluate machine text understanding. Arabic is a challenging language...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.63876-63904
Hauptverfasser: Biltawi, Mariam M., Tedmori, Sara, Awajan, Arafat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63904
container_issue
container_start_page 63876
container_title IEEE access
container_volume 9
creator Biltawi, Mariam M.
Tedmori, Sara
Awajan, Arafat
description Question-answering (QA) systems aim to provide answers for given questions. The answers can be extracted or generated from either unstructured or structured text. Therefore, QA is considered an important field that can be used to evaluate machine text understanding. Arabic is a challenging language for many reasons; although it is spoken by more than 330 million native speakers, research on this language is limited. A few QA systems created for Arabic text are available. They were created to experiment on small datasets, some of which are unavailable. The research on QA systems can be expanded into different components of QA systems, such as question analysis, information retrieval, and answer extraction. The objective of this research is to analyze the QA systems created for Arabic text by reviewing, categorizing, and analyzing the gaps by providing advice to those who would like to work in this field. Six benchmark datasets are available for testing and evaluating Arabic QA systems, and 26 selected Arabic QA systems are analyzed and discussed in this research.
doi_str_mv 10.1109/ACCESS.2021.3074950
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2519967264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9410528</ieee_id><doaj_id>oai_doaj_org_article_7da63d1183cd4aaa904391969e3bf288</doaj_id><sourcerecordid>2519967264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6e92631dca44707868a1c409b42fc87e2212cd8e1045afa95a1ef85ff76b74d23</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFivUXeAn0HN3Z3exHbyFYKwil2J6XyWYjK2rsrlL8942NSOcyw5t5b3gvScZAJgBET4uynK1WE0ooTBiRXOfkLhlQEDpjORP3_-bHZBTjhnSlOiiXg2RaBKy8TT9OLh59u0-Lffxxwe_X6eocj24XX9I5HjoYt-fo41Py0OA2utG1D5Ov19ln-ZYt3-eLslhmlhN1zITTVDCoLXIuiVRCIXQbXXHaWCUdpUBtrRwQnmODOkdwjcqbRopK8pqyYbLodesWN-YQ_A7D2bTozR_QhrXBcPR264ysUbAaQDFbc0TUhDMNWmjHqoYq1Wk991qH0H5ffJpNewqdoWhoDloLSQXvrlh_ZUMbY3DN7SsQcwna9EGbS9DmGnTHGvcs75y7MTQHklPFfgF1n3b8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519967264</pqid></control><display><type>article</type><title>Arabic Question Answering Systems: Gap Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Biltawi, Mariam M. ; Tedmori, Sara ; Awajan, Arafat</creator><creatorcontrib>Biltawi, Mariam M. ; Tedmori, Sara ; Awajan, Arafat</creatorcontrib><description>Question-answering (QA) systems aim to provide answers for given questions. The answers can be extracted or generated from either unstructured or structured text. Therefore, QA is considered an important field that can be used to evaluate machine text understanding. Arabic is a challenging language for many reasons; although it is spoken by more than 330 million native speakers, research on this language is limited. A few QA systems created for Arabic text are available. They were created to experiment on small datasets, some of which are unavailable. The research on QA systems can be expanded into different components of QA systems, such as question analysis, information retrieval, and answer extraction. The objective of this research is to analyze the QA systems created for Arabic text by reviewing, categorizing, and analyzing the gaps by providing advice to those who would like to work in this field. Six benchmark datasets are available for testing and evaluating Arabic QA systems, and 26 selected Arabic QA systems are analyzed and discussed in this research.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3074950</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Answer extraction ; Arabic question answering ; Datasets ; Information retrieval ; Knowledge based systems ; Knowledge discovery ; Natural language processing ; question analysis ; question answering dataset ; question answering system ; Questions ; Search engines ; Syntactics ; Systems analysis ; Task analysis ; Unstructured data</subject><ispartof>IEEE access, 2021, Vol.9, p.63876-63904</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6e92631dca44707868a1c409b42fc87e2212cd8e1045afa95a1ef85ff76b74d23</citedby><cites>FETCH-LOGICAL-c408t-6e92631dca44707868a1c409b42fc87e2212cd8e1045afa95a1ef85ff76b74d23</cites><orcidid>0000-0002-7067-5658 ; 0000-0002-4386-0823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9410528$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Biltawi, Mariam M.</creatorcontrib><creatorcontrib>Tedmori, Sara</creatorcontrib><creatorcontrib>Awajan, Arafat</creatorcontrib><title>Arabic Question Answering Systems: Gap Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Question-answering (QA) systems aim to provide answers for given questions. The answers can be extracted or generated from either unstructured or structured text. Therefore, QA is considered an important field that can be used to evaluate machine text understanding. Arabic is a challenging language for many reasons; although it is spoken by more than 330 million native speakers, research on this language is limited. A few QA systems created for Arabic text are available. They were created to experiment on small datasets, some of which are unavailable. The research on QA systems can be expanded into different components of QA systems, such as question analysis, information retrieval, and answer extraction. The objective of this research is to analyze the QA systems created for Arabic text by reviewing, categorizing, and analyzing the gaps by providing advice to those who would like to work in this field. Six benchmark datasets are available for testing and evaluating Arabic QA systems, and 26 selected Arabic QA systems are analyzed and discussed in this research.</description><subject>Answer extraction</subject><subject>Arabic question answering</subject><subject>Datasets</subject><subject>Information retrieval</subject><subject>Knowledge based systems</subject><subject>Knowledge discovery</subject><subject>Natural language processing</subject><subject>question analysis</subject><subject>question answering dataset</subject><subject>question answering system</subject><subject>Questions</subject><subject>Search engines</subject><subject>Syntactics</subject><subject>Systems analysis</subject><subject>Task analysis</subject><subject>Unstructured data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFivUXeAn0HN3Z3exHbyFYKwil2J6XyWYjK2rsrlL8942NSOcyw5t5b3gvScZAJgBET4uynK1WE0ooTBiRXOfkLhlQEDpjORP3_-bHZBTjhnSlOiiXg2RaBKy8TT9OLh59u0-Lffxxwe_X6eocj24XX9I5HjoYt-fo41Py0OA2utG1D5Ov19ln-ZYt3-eLslhmlhN1zITTVDCoLXIuiVRCIXQbXXHaWCUdpUBtrRwQnmODOkdwjcqbRopK8pqyYbLodesWN-YQ_A7D2bTozR_QhrXBcPR264ysUbAaQDFbc0TUhDMNWmjHqoYq1Wk991qH0H5ffJpNewqdoWhoDloLSQXvrlh_ZUMbY3DN7SsQcwna9EGbS9DmGnTHGvcs75y7MTQHklPFfgF1n3b8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Biltawi, Mariam M.</creator><creator>Tedmori, Sara</creator><creator>Awajan, Arafat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7067-5658</orcidid><orcidid>https://orcid.org/0000-0002-4386-0823</orcidid></search><sort><creationdate>2021</creationdate><title>Arabic Question Answering Systems: Gap Analysis</title><author>Biltawi, Mariam M. ; Tedmori, Sara ; Awajan, Arafat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6e92631dca44707868a1c409b42fc87e2212cd8e1045afa95a1ef85ff76b74d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Answer extraction</topic><topic>Arabic question answering</topic><topic>Datasets</topic><topic>Information retrieval</topic><topic>Knowledge based systems</topic><topic>Knowledge discovery</topic><topic>Natural language processing</topic><topic>question analysis</topic><topic>question answering dataset</topic><topic>question answering system</topic><topic>Questions</topic><topic>Search engines</topic><topic>Syntactics</topic><topic>Systems analysis</topic><topic>Task analysis</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biltawi, Mariam M.</creatorcontrib><creatorcontrib>Tedmori, Sara</creatorcontrib><creatorcontrib>Awajan, Arafat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biltawi, Mariam M.</au><au>Tedmori, Sara</au><au>Awajan, Arafat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabic Question Answering Systems: Gap Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>63876</spage><epage>63904</epage><pages>63876-63904</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Question-answering (QA) systems aim to provide answers for given questions. The answers can be extracted or generated from either unstructured or structured text. Therefore, QA is considered an important field that can be used to evaluate machine text understanding. Arabic is a challenging language for many reasons; although it is spoken by more than 330 million native speakers, research on this language is limited. A few QA systems created for Arabic text are available. They were created to experiment on small datasets, some of which are unavailable. The research on QA systems can be expanded into different components of QA systems, such as question analysis, information retrieval, and answer extraction. The objective of this research is to analyze the QA systems created for Arabic text by reviewing, categorizing, and analyzing the gaps by providing advice to those who would like to work in this field. Six benchmark datasets are available for testing and evaluating Arabic QA systems, and 26 selected Arabic QA systems are analyzed and discussed in this research.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3074950</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-7067-5658</orcidid><orcidid>https://orcid.org/0000-0002-4386-0823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.63876-63904
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2519967264
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Answer extraction
Arabic question answering
Datasets
Information retrieval
Knowledge based systems
Knowledge discovery
Natural language processing
question analysis
question answering dataset
question answering system
Questions
Search engines
Syntactics
Systems analysis
Task analysis
Unstructured data
title Arabic Question Answering Systems: Gap Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabic%20Question%20Answering%20Systems:%20Gap%20Analysis&rft.jtitle=IEEE%20access&rft.au=Biltawi,%20Mariam%20M.&rft.date=2021&rft.volume=9&rft.spage=63876&rft.epage=63904&rft.pages=63876-63904&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3074950&rft_dat=%3Cproquest_doaj_%3E2519967264%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519967264&rft_id=info:pmid/&rft_ieee_id=9410528&rft_doaj_id=oai_doaj_org_article_7da63d1183cd4aaa904391969e3bf288&rfr_iscdi=true