Finite rigid subgraphs of pants graphs

Let S g , n be an orientable surface of genus g with n punctures. We identify a finite rigid subgraph X g , n of the pants graph P ( S g , n ) , that is, a subgraph with the property that any simplicial embedding of X g , n into any pants graph P ( S g ′ , n ′ ) is induced by an embedding S g , n →...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2021-06, Vol.212 (1), p.205-223
Hauptverfasser: Hernández Hernández, Jesús, Leininger, Christopher J., Maungchang, Rasimate
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 1
container_start_page 205
container_title Geometriae dedicata
container_volume 212
creator Hernández Hernández, Jesús
Leininger, Christopher J.
Maungchang, Rasimate
description Let S g , n be an orientable surface of genus g with n punctures. We identify a finite rigid subgraph X g , n of the pants graph P ( S g , n ) , that is, a subgraph with the property that any simplicial embedding of X g , n into any pants graph P ( S g ′ , n ′ ) is induced by an embedding S g , n → S g ′ , n ′ . This extends results of the third author for the case of genus zero surfaces.
doi_str_mv 10.1007/s10711-020-00555-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519872870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519872870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dcddb913c4513bef23d1ec4e6043884d94b5c2f68a049b7187b38617c730577e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEf_gKuC4C76Xj76kqUMzigMuNF1aNO0dtC2Jp2F_95qBXeuHhfuuQ8OY5cINwhAtwmBEDkI4ABaa45HLENNglsszDHLAFTBNWl9ys5S2gOAJRIZu950fTeFPHZtV-fpULWxHF9TPjT5WPZTypd8zk6a8i2Fi9-7Yi-b--f1A989bR_XdzvuJdqJ176uK4vSK42yCo2QNQavQgFKGqNqqyrtRVOYEpStCA1V0hRIniRooiBX7GrZHePwcQhpcvvhEPv5pRMarSFhCOaWWFo-DinF0Lgxdu9l_HQI7tuHW3y42Yf78eFwhuQCpbnctyH-Tf9DfQHcwGCu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519872870</pqid></control><display><type>article</type><title>Finite rigid subgraphs of pants graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hernández Hernández, Jesús ; Leininger, Christopher J. ; Maungchang, Rasimate</creator><creatorcontrib>Hernández Hernández, Jesús ; Leininger, Christopher J. ; Maungchang, Rasimate</creatorcontrib><description>Let S g , n be an orientable surface of genus g with n punctures. We identify a finite rigid subgraph X g , n of the pants graph P ( S g , n ) , that is, a subgraph with the property that any simplicial embedding of X g , n into any pants graph P ( S g ′ , n ′ ) is induced by an embedding S g , n → S g ′ , n ′ . This extends results of the third author for the case of genus zero surfaces.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-020-00555-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Embedding ; Graph theory ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2021-06, Vol.212 (1), p.205-223</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dcddb913c4513bef23d1ec4e6043884d94b5c2f68a049b7187b38617c730577e3</citedby><cites>FETCH-LOGICAL-c319t-dcddb913c4513bef23d1ec4e6043884d94b5c2f68a049b7187b38617c730577e3</cites><orcidid>0000-0002-8210-0827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-020-00555-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-020-00555-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hernández Hernández, Jesús</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Maungchang, Rasimate</creatorcontrib><title>Finite rigid subgraphs of pants graphs</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Let S g , n be an orientable surface of genus g with n punctures. We identify a finite rigid subgraph X g , n of the pants graph P ( S g , n ) , that is, a subgraph with the property that any simplicial embedding of X g , n into any pants graph P ( S g ′ , n ′ ) is induced by an embedding S g , n → S g ′ , n ′ . This extends results of the third author for the case of genus zero surfaces.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Embedding</subject><subject>Graph theory</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEf_gKuC4C76Xj76kqUMzigMuNF1aNO0dtC2Jp2F_95qBXeuHhfuuQ8OY5cINwhAtwmBEDkI4ABaa45HLENNglsszDHLAFTBNWl9ys5S2gOAJRIZu950fTeFPHZtV-fpULWxHF9TPjT5WPZTypd8zk6a8i2Fi9-7Yi-b--f1A989bR_XdzvuJdqJ176uK4vSK42yCo2QNQavQgFKGqNqqyrtRVOYEpStCA1V0hRIniRooiBX7GrZHePwcQhpcvvhEPv5pRMarSFhCOaWWFo-DinF0Lgxdu9l_HQI7tuHW3y42Yf78eFwhuQCpbnctyH-Tf9DfQHcwGCu</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hernández Hernández, Jesús</creator><creator>Leininger, Christopher J.</creator><creator>Maungchang, Rasimate</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8210-0827</orcidid></search><sort><creationdate>20210601</creationdate><title>Finite rigid subgraphs of pants graphs</title><author>Hernández Hernández, Jesús ; Leininger, Christopher J. ; Maungchang, Rasimate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dcddb913c4513bef23d1ec4e6043884d94b5c2f68a049b7187b38617c730577e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Embedding</topic><topic>Graph theory</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández Hernández, Jesús</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Maungchang, Rasimate</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández Hernández, Jesús</au><au>Leininger, Christopher J.</au><au>Maungchang, Rasimate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite rigid subgraphs of pants graphs</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>212</volume><issue>1</issue><spage>205</spage><epage>223</epage><pages>205-223</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Let S g , n be an orientable surface of genus g with n punctures. We identify a finite rigid subgraph X g , n of the pants graph P ( S g , n ) , that is, a subgraph with the property that any simplicial embedding of X g , n into any pants graph P ( S g ′ , n ′ ) is induced by an embedding S g , n → S g ′ , n ′ . This extends results of the third author for the case of genus zero surfaces.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-020-00555-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8210-0827</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2021-06, Vol.212 (1), p.205-223
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_2519872870
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Embedding
Graph theory
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title Finite rigid subgraphs of pants graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20rigid%20subgraphs%20of%20pants%20graphs&rft.jtitle=Geometriae%20dedicata&rft.au=Hern%C3%A1ndez%C2%A0Hern%C3%A1ndez,%20Jes%C3%BAs&rft.date=2021-06-01&rft.volume=212&rft.issue=1&rft.spage=205&rft.epage=223&rft.pages=205-223&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-020-00555-1&rft_dat=%3Cproquest_cross%3E2519872870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519872870&rft_id=info:pmid/&rfr_iscdi=true