Simulation of non-linear structural elastodynamic and impact problems using minimum energy and simultaneous diagonalization high-order bases

We present the application of simultaneous diagonalization and minimum energy (SDME) high-order finite element modal bases for simulation of transient non-linear elastodynamic problem, including impact cases with neo-hookean hyperelastic materials. The bases are constructed using procedures for simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Dias, A P C, Suzuki, J L, Valente, G L, Bittencourt, M L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dias, A P C
Suzuki, J L
Valente, G L
Bittencourt, M L
description We present the application of simultaneous diagonalization and minimum energy (SDME) high-order finite element modal bases for simulation of transient non-linear elastodynamic problem, including impact cases with neo-hookean hyperelastic materials. The bases are constructed using procedures for simultaneous diagonalization of the internal modes and Schur complement of the boundary modes from the standard nodal and modal bases, constructed using Lagrange and Jacobi polynomials, respectively. The implementation of these bases in a high-order finite element code is straightforward, since the procedure is applied only to the one-dimensional expansion bases. Non-linear transient structural problems with large deformation, hyperelastic materials and impact are solved using the obtained bases with explicit and implicit time integration procedures. Iterative solutions based on preconditioned conjugate gradient methods are considered. The performance of the proposed bases in terms of the number of iterations of pre-conditioned conjugate gradient methods and computational time are compared with the standard nodal and modal bases. Our numerical tests obtained speedups up to 41 using the considered bases when compared to the standard ones.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2519566598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519566598</sourcerecordid><originalsourceid>FETCH-proquest_journals_25195665983</originalsourceid><addsrcrecordid>eNqNjctOwzAQAC0kJCroP6zEOVLq1KE9IxB3uFfbZJtuZe8Wr30o38BHEx4fwGkuo5krt_Bdt2o2a-9v3NLs1Lat7x98CN3Cfb5yqhELq4AeQFSayEKYwUquQ6kZI1BEKzpeBBMPgDICpzMOBc5Z95GSQTWWCRLLXEtAQnm6_Ij2nS8opNVgZJxUMPLH7_DI07HRPFKGPRrZnbs-YDRa_vHW3T8_vT2-NPPnvZKV3UlrngO282G1DX0ftpvuf9YXschXZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519566598</pqid></control><display><type>article</type><title>Simulation of non-linear structural elastodynamic and impact problems using minimum energy and simultaneous diagonalization high-order bases</title><source>Free E- Journals</source><creator>Dias, A P C ; Suzuki, J L ; Valente, G L ; Bittencourt, M L</creator><creatorcontrib>Dias, A P C ; Suzuki, J L ; Valente, G L ; Bittencourt, M L</creatorcontrib><description>We present the application of simultaneous diagonalization and minimum energy (SDME) high-order finite element modal bases for simulation of transient non-linear elastodynamic problem, including impact cases with neo-hookean hyperelastic materials. The bases are constructed using procedures for simultaneous diagonalization of the internal modes and Schur complement of the boundary modes from the standard nodal and modal bases, constructed using Lagrange and Jacobi polynomials, respectively. The implementation of these bases in a high-order finite element code is straightforward, since the procedure is applied only to the one-dimensional expansion bases. Non-linear transient structural problems with large deformation, hyperelastic materials and impact are solved using the obtained bases with explicit and implicit time integration procedures. Iterative solutions based on preconditioned conjugate gradient methods are considered. The performance of the proposed bases in terms of the number of iterations of pre-conditioned conjugate gradient methods and computational time are compared with the standard nodal and modal bases. Our numerical tests obtained speedups up to 41 using the considered bases when compared to the standard ones.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computing time ; Conjugates ; Elastodynamics ; Finite element method ; Iterative methods ; Polynomials ; Time integration</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dias, A P C</creatorcontrib><creatorcontrib>Suzuki, J L</creatorcontrib><creatorcontrib>Valente, G L</creatorcontrib><creatorcontrib>Bittencourt, M L</creatorcontrib><title>Simulation of non-linear structural elastodynamic and impact problems using minimum energy and simultaneous diagonalization high-order bases</title><title>arXiv.org</title><description>We present the application of simultaneous diagonalization and minimum energy (SDME) high-order finite element modal bases for simulation of transient non-linear elastodynamic problem, including impact cases with neo-hookean hyperelastic materials. The bases are constructed using procedures for simultaneous diagonalization of the internal modes and Schur complement of the boundary modes from the standard nodal and modal bases, constructed using Lagrange and Jacobi polynomials, respectively. The implementation of these bases in a high-order finite element code is straightforward, since the procedure is applied only to the one-dimensional expansion bases. Non-linear transient structural problems with large deformation, hyperelastic materials and impact are solved using the obtained bases with explicit and implicit time integration procedures. Iterative solutions based on preconditioned conjugate gradient methods are considered. The performance of the proposed bases in terms of the number of iterations of pre-conditioned conjugate gradient methods and computational time are compared with the standard nodal and modal bases. Our numerical tests obtained speedups up to 41 using the considered bases when compared to the standard ones.</description><subject>Computing time</subject><subject>Conjugates</subject><subject>Elastodynamics</subject><subject>Finite element method</subject><subject>Iterative methods</subject><subject>Polynomials</subject><subject>Time integration</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjctOwzAQAC0kJCroP6zEOVLq1KE9IxB3uFfbZJtuZe8Wr30o38BHEx4fwGkuo5krt_Bdt2o2a-9v3NLs1Lat7x98CN3Cfb5yqhELq4AeQFSayEKYwUquQ6kZI1BEKzpeBBMPgDICpzMOBc5Z95GSQTWWCRLLXEtAQnm6_Ij2nS8opNVgZJxUMPLH7_DI07HRPFKGPRrZnbs-YDRa_vHW3T8_vT2-NPPnvZKV3UlrngO282G1DX0ftpvuf9YXschXZQ</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Dias, A P C</creator><creator>Suzuki, J L</creator><creator>Valente, G L</creator><creator>Bittencourt, M L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210427</creationdate><title>Simulation of non-linear structural elastodynamic and impact problems using minimum energy and simultaneous diagonalization high-order bases</title><author>Dias, A P C ; Suzuki, J L ; Valente, G L ; Bittencourt, M L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25195665983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computing time</topic><topic>Conjugates</topic><topic>Elastodynamics</topic><topic>Finite element method</topic><topic>Iterative methods</topic><topic>Polynomials</topic><topic>Time integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Dias, A P C</creatorcontrib><creatorcontrib>Suzuki, J L</creatorcontrib><creatorcontrib>Valente, G L</creatorcontrib><creatorcontrib>Bittencourt, M L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, A P C</au><au>Suzuki, J L</au><au>Valente, G L</au><au>Bittencourt, M L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simulation of non-linear structural elastodynamic and impact problems using minimum energy and simultaneous diagonalization high-order bases</atitle><jtitle>arXiv.org</jtitle><date>2021-04-27</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We present the application of simultaneous diagonalization and minimum energy (SDME) high-order finite element modal bases for simulation of transient non-linear elastodynamic problem, including impact cases with neo-hookean hyperelastic materials. The bases are constructed using procedures for simultaneous diagonalization of the internal modes and Schur complement of the boundary modes from the standard nodal and modal bases, constructed using Lagrange and Jacobi polynomials, respectively. The implementation of these bases in a high-order finite element code is straightforward, since the procedure is applied only to the one-dimensional expansion bases. Non-linear transient structural problems with large deformation, hyperelastic materials and impact are solved using the obtained bases with explicit and implicit time integration procedures. Iterative solutions based on preconditioned conjugate gradient methods are considered. The performance of the proposed bases in terms of the number of iterations of pre-conditioned conjugate gradient methods and computational time are compared with the standard nodal and modal bases. Our numerical tests obtained speedups up to 41 using the considered bases when compared to the standard ones.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2519566598
source Free E- Journals
subjects Computing time
Conjugates
Elastodynamics
Finite element method
Iterative methods
Polynomials
Time integration
title Simulation of non-linear structural elastodynamic and impact problems using minimum energy and simultaneous diagonalization high-order bases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simulation%20of%20non-linear%20structural%20elastodynamic%20and%20impact%20problems%20using%20minimum%20energy%20and%20simultaneous%20diagonalization%20high-order%20bases&rft.jtitle=arXiv.org&rft.au=Dias,%20A%20P%20C&rft.date=2021-04-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2519566598%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519566598&rft_id=info:pmid/&rfr_iscdi=true