Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment

Photodynamic therapy (PDT) is an emerging technology for tumor treatment in which photosensitizer (PS)-mediated light irradiation reduces oxygen, producing high levels of reactive oxygen species (ROS) that can cause vascular injury and effectively kill tumor cells. However, the naturally hypoxic tum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2021-04, Vol.13 (1), Article 39
Hauptverfasser: Shen, Zijun, Ma, Qingming, Zhou, Xinyu, Zhang, Guimin, Hao, Guizhou, Sun, Yong, Cao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title NPG Asia materials
container_volume 13
creator Shen, Zijun
Ma, Qingming
Zhou, Xinyu
Zhang, Guimin
Hao, Guizhou
Sun, Yong
Cao, Jie
description Photodynamic therapy (PDT) is an emerging technology for tumor treatment in which photosensitizer (PS)-mediated light irradiation reduces oxygen, producing high levels of reactive oxygen species (ROS) that can cause vascular injury and effectively kill tumor cells. However, the naturally hypoxic tumor microenvironment is the main obstacle that hinders the photodynamic response in vivo and prevents its extensive application to tumor treatment. Moreover, PDT-mediated oxygen consumption further increases tumor hypoxia, potentially causing a variety of adverse consequences, such as angiogenesis, tumor invasion, and metastasis. To overcome these limitations caused by hypoxia, multiple strategies have been investigated, including the use of oxygen carriers and reactive oxygen supply materials, the regulation of tumor microenvironments, and multimodal therapy including PDT. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy and better therapeutic effects. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy, from the design of novel nonreactive oxygen carriers to reactive materials and other strategies, including the regulation of tumor microenvironments and PDT-involved multimodal therapy.
doi_str_mv 10.1038/s41427-021-00303-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519561740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519561740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-91eee15c8ee2a836c36c85835e249a14660fa69e26e082dc7ace7933d482c6813</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bTY5SvGjUPCgXg0xnW1Tups1SYv77926ojdhYAbmfd8ZHoQuKbmmhKubJKhgVUEYLQjhhBf0BE2oUqIQpKxOf2ehz9EspS0hhEopVCkm6O05R5th7SHhHLBvuhgOgLtNyGHVt7bxDucNRNv1GOraO-t6_N7jCDsPB9-uj1uc902IeNN34dNbDO3Bx9A20OYLdFbbXYLZT5-i1_u7l_ljsXx6WMxvl4UTTOdCUwCgpVMAzCou3VCqVLwEJrSlQkpSW6mBSSCKrVxlHVSa85VQzElF-RRdjbnD-x97SNlswz62w0nDSqpLSStBBhUbVS6GlCLUpou-sbE3lJgjSjOiNANK843SHKP5aEqDuF1D_Iv-x_UF60R3sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519561740</pqid></control><display><type>article</type><title>Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Free Full-Text Journals in Chemistry</source><creator>Shen, Zijun ; Ma, Qingming ; Zhou, Xinyu ; Zhang, Guimin ; Hao, Guizhou ; Sun, Yong ; Cao, Jie</creator><creatorcontrib>Shen, Zijun ; Ma, Qingming ; Zhou, Xinyu ; Zhang, Guimin ; Hao, Guizhou ; Sun, Yong ; Cao, Jie</creatorcontrib><description>Photodynamic therapy (PDT) is an emerging technology for tumor treatment in which photosensitizer (PS)-mediated light irradiation reduces oxygen, producing high levels of reactive oxygen species (ROS) that can cause vascular injury and effectively kill tumor cells. However, the naturally hypoxic tumor microenvironment is the main obstacle that hinders the photodynamic response in vivo and prevents its extensive application to tumor treatment. Moreover, PDT-mediated oxygen consumption further increases tumor hypoxia, potentially causing a variety of adverse consequences, such as angiogenesis, tumor invasion, and metastasis. To overcome these limitations caused by hypoxia, multiple strategies have been investigated, including the use of oxygen carriers and reactive oxygen supply materials, the regulation of tumor microenvironments, and multimodal therapy including PDT. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy and better therapeutic effects. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy, from the design of novel nonreactive oxygen carriers to reactive materials and other strategies, including the regulation of tumor microenvironments and PDT-involved multimodal therapy.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-021-00303-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/54/152 ; 631/61/54/990 ; Biomaterials ; Chemistry and Materials Science ; Energy Systems ; Hypoxia ; Light irradiation ; Materials Science ; New technology ; Optical and Electronic Materials ; Oxygen consumption ; Photodynamic therapy ; Review Article ; Structural Materials ; Surface and Interface Science ; Thin Films ; Tumors</subject><ispartof>NPG Asia materials, 2021-04, Vol.13 (1), Article 39</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-91eee15c8ee2a836c36c85835e249a14660fa69e26e082dc7ace7933d482c6813</citedby><cites>FETCH-LOGICAL-c429t-91eee15c8ee2a836c36c85835e249a14660fa69e26e082dc7ace7933d482c6813</cites><orcidid>0000-0003-2547-7035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-021-00303-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-021-00303-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Shen, Zijun</creatorcontrib><creatorcontrib>Ma, Qingming</creatorcontrib><creatorcontrib>Zhou, Xinyu</creatorcontrib><creatorcontrib>Zhang, Guimin</creatorcontrib><creatorcontrib>Hao, Guizhou</creatorcontrib><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><title>Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>Photodynamic therapy (PDT) is an emerging technology for tumor treatment in which photosensitizer (PS)-mediated light irradiation reduces oxygen, producing high levels of reactive oxygen species (ROS) that can cause vascular injury and effectively kill tumor cells. However, the naturally hypoxic tumor microenvironment is the main obstacle that hinders the photodynamic response in vivo and prevents its extensive application to tumor treatment. Moreover, PDT-mediated oxygen consumption further increases tumor hypoxia, potentially causing a variety of adverse consequences, such as angiogenesis, tumor invasion, and metastasis. To overcome these limitations caused by hypoxia, multiple strategies have been investigated, including the use of oxygen carriers and reactive oxygen supply materials, the regulation of tumor microenvironments, and multimodal therapy including PDT. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy and better therapeutic effects. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy, from the design of novel nonreactive oxygen carriers to reactive materials and other strategies, including the regulation of tumor microenvironments and PDT-involved multimodal therapy.</description><subject>631/61/54/152</subject><subject>631/61/54/990</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Energy Systems</subject><subject>Hypoxia</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>New technology</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen consumption</subject><subject>Photodynamic therapy</subject><subject>Review Article</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><subject>Tumors</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bTY5SvGjUPCgXg0xnW1Tups1SYv77926ojdhYAbmfd8ZHoQuKbmmhKubJKhgVUEYLQjhhBf0BE2oUqIQpKxOf2ehz9EspS0hhEopVCkm6O05R5th7SHhHLBvuhgOgLtNyGHVt7bxDucNRNv1GOraO-t6_N7jCDsPB9-uj1uc902IeNN34dNbDO3Bx9A20OYLdFbbXYLZT5-i1_u7l_ljsXx6WMxvl4UTTOdCUwCgpVMAzCou3VCqVLwEJrSlQkpSW6mBSSCKrVxlHVSa85VQzElF-RRdjbnD-x97SNlswz62w0nDSqpLSStBBhUbVS6GlCLUpou-sbE3lJgjSjOiNANK843SHKP5aEqDuF1D_Iv-x_UF60R3sQ</recordid><startdate>20210430</startdate><enddate>20210430</enddate><creator>Shen, Zijun</creator><creator>Ma, Qingming</creator><creator>Zhou, Xinyu</creator><creator>Zhang, Guimin</creator><creator>Hao, Guizhou</creator><creator>Sun, Yong</creator><creator>Cao, Jie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2547-7035</orcidid></search><sort><creationdate>20210430</creationdate><title>Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment</title><author>Shen, Zijun ; Ma, Qingming ; Zhou, Xinyu ; Zhang, Guimin ; Hao, Guizhou ; Sun, Yong ; Cao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-91eee15c8ee2a836c36c85835e249a14660fa69e26e082dc7ace7933d482c6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/61/54/152</topic><topic>631/61/54/990</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Energy Systems</topic><topic>Hypoxia</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>New technology</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen consumption</topic><topic>Photodynamic therapy</topic><topic>Review Article</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Zijun</creatorcontrib><creatorcontrib>Ma, Qingming</creatorcontrib><creatorcontrib>Zhou, Xinyu</creatorcontrib><creatorcontrib>Zhang, Guimin</creatorcontrib><creatorcontrib>Hao, Guizhou</creatorcontrib><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Cao, Jie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Zijun</au><au>Ma, Qingming</au><au>Zhou, Xinyu</au><au>Zhang, Guimin</au><au>Hao, Guizhou</au><au>Sun, Yong</au><au>Cao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2021-04-30</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><artnum>39</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Photodynamic therapy (PDT) is an emerging technology for tumor treatment in which photosensitizer (PS)-mediated light irradiation reduces oxygen, producing high levels of reactive oxygen species (ROS) that can cause vascular injury and effectively kill tumor cells. However, the naturally hypoxic tumor microenvironment is the main obstacle that hinders the photodynamic response in vivo and prevents its extensive application to tumor treatment. Moreover, PDT-mediated oxygen consumption further increases tumor hypoxia, potentially causing a variety of adverse consequences, such as angiogenesis, tumor invasion, and metastasis. To overcome these limitations caused by hypoxia, multiple strategies have been investigated, including the use of oxygen carriers and reactive oxygen supply materials, the regulation of tumor microenvironments, and multimodal therapy including PDT. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy and better therapeutic effects. In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy, from the design of novel nonreactive oxygen carriers to reactive materials and other strategies, including the regulation of tumor microenvironments and PDT-involved multimodal therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-021-00303-1</doi><orcidid>https://orcid.org/0000-0003-2547-7035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2021-04, Vol.13 (1), Article 39
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2519561740
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; Free Full-Text Journals in Chemistry
subjects 631/61/54/152
631/61/54/990
Biomaterials
Chemistry and Materials Science
Energy Systems
Hypoxia
Light irradiation
Materials Science
New technology
Optical and Electronic Materials
Oxygen consumption
Photodynamic therapy
Review Article
Structural Materials
Surface and Interface Science
Thin Films
Tumors
title Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20to%20improve%20photodynamic%20therapy%20efficacy%20by%20relieving%20the%20tumor%20hypoxia%20environment&rft.jtitle=NPG%20Asia%20materials&rft.au=Shen,%20Zijun&rft.date=2021-04-30&rft.volume=13&rft.issue=1&rft.artnum=39&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-021-00303-1&rft_dat=%3Cproquest_cross%3E2519561740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519561740&rft_id=info:pmid/&rfr_iscdi=true